
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Proactive Debugging of Memory Leakage Bugs
in Single Page Web Applications

Arooba Shahoor, Satbek Abdyldayev, Hyeongi Hong,
Jooyong Yi, Member, IEEE , Dongsun Kim†, Member, IEEE

Abstract—Developing modern web applications often relies on web-based application frameworks such as React, Vue.js, and Angular.
Although the frameworks accelerate the development of web applications with several useful and predefined components, they are
inevitably vulnerable to unmanaged memory consumption as the frameworks often produce monolithic web pages, so-called, Single
Page Applications (SPAs), in which no page refresh actions are made during navigation. Web applications can be alive for hours and
days with behavior loops, in such cases, even a single memory leak in an SPA can cause performance degradation on the client side.
However, recent debugging techniques for web applications focus on memory leak detection, which requires manual tasks and produces
imprecise results, rather than proactively repairing memory leaks.

We propose LEAKPAIR, a technique to proactively repair memory leaks in SPAs rather than following a classical and reactive
debugging process. Given the insight that memory leaks are mostly non-functional bugs and fixing them might not change the behavior
of an application, the technique is designed to proactively generate patches to fix memory leaks, without leak detection, which is often
heavy and tedious. Thus, the proactive technique can significantly reduce the time and effort necessary to fix the memory leaks. To
generate effective patches, LEAKPAIR follows the idea of pattern-based program repair since the automated repair strategy shows
successful results in many recent studies. We extensively evaluate the technique on 60 open-source projects without using explicit leak
detection. The patches generated by our technique are also submitted to the projects as pull requests (PRs). The results of PRs show
that LEAKPAIR can generate effective patches to reduce memory consumption that are acceptable to developers. In addition, we execute
the test suites given by the projects after applying the patches, and it turns out that the patches do not cause any functionality breakage;
this might imply that LEAKPAIR can generate non-intrusive patches for memory leaks. Furthermore, we compare the performance of
LEAKPAIR with that of GPT-4 as recent studies show that large language models are successful with program repair tasks. Our results
show that our technique outperforms the language model.

Index Terms—memory leaks, program repair, non-intrusive fixes, single page web applications, proactive debugging

✦

1 INTRODUCTION

MPAs (Multiple Page Web Applications) were the most
popular architectural style until 2010 when building

web applications. In MPAs, each page had to re-fetch and
reload the entire web page for each user request. The tra-
ditional MPA approach incurs a longer page switch time
owing to the server round-trip for each request, and this
delay increases with the size and complexity of the server
APIs. The burgeoning usage of smartphones and mobile
apps and the growing demands for swift and responsive
web apps inspired the web development community to
change how web pages were architected and rendered.

To address the responsiveness of web pages, the concept
of Single Page Applications (SPAs) was introduced as a new
architectural style for web applications; this idea was first
implemented by AngularJS, whereby rather than updating
the entire webpage, only the data of the same page was

†Corresponding author.

• Arooba Shahoor is with WithPlaybook Inc., Seoul, Republic of Korea.
E-mail: arooba.shahoor@gmail.com

• Satbek Abdyldayev, Hyeongi Hong, and Jooyong Yi are with the Depart-
ment of Computer Science and Engineering at UNIST (Ulsan National
Institute of Science and Technology), Ulsan, Republic of Korea.
E-mail: {satbek, ghdgusrl2000, jooyong}@unist.ac.kr

• Dongsun Kim is with the Department of Computer Science and Engineer-
ing at Korea University, Seoul, Republic of Korea.
E-mail: darkrsw@korea.ac.kr

PDVWHU X�MLVRQJ�GHPRPHPOHDN

� LPSRUW DV 5HDFW IURP
UHDFW
� � LPSRUW DV 5HDFW IURP
UHDFW
�
� LPSRUW 6LGH3DQH3OXJLQ IURP
���6LGH3DQH3OXJLQ
� � LPSRUW 6LGH3DQH3OXJLQ IURP
���6LGH3DQH3OXJLQ
�
� �
� FRQVW VW\OHV UHTXLUH�
��6LGH3DQH�VFVV
�� � FRQVW VW\OHV UHTXLUH�
��6LGH3DQH�VFVV
��
� �
� H[SRUW LQWHUIDFH 6LGH3DQH3URSV ^ � H[SRUW LQWHUIDFH 6LGH3DQH3URSV ^
� SOXJLQV��6LGH3DQH3OXJLQ>@� � SOXJLQV��6LGH3DQH3OXJLQ>@�
� FODVV1DPH"��VWULQJ� � FODVV1DPH"��VWULQJ�
� ` � `
�� ��
�� H[SRUW LQWHUIDFH 6LGH3DQH6WDWH ^ �� H[SRUW LQWHUIDFH 6LGH3DQH6WDWH ^
�� FXUUHQW3DQH��6LGH3DQH3OXJLQ� �� FXUUHQW3DQH��6LGH3DQH3OXJLQ�
�� ` �� `
�� � ��
�� H[SRUW�GHIDXOW�FODVV�6LGH3DQH�H[WHQGV�5HDFW�&RPSRQHQW�6LGH3DQH3URSV��6LGH3DQH6WDWH!�^� �� H[SRUW GHIDXOW FODVV 6LGH3DQH H[WHQGV 5HDFW�&RPSRQHQW�6LGH3DQH3URSV� 6LGH3DQH6WDWH! ^
�� ����SULYDWH�GLY� �5HDFW�FUHDWH5HI�+70/'LY(OHPHQW!���� �� SULYDWH GLY 5HDFW�FUHDWH5HI�+70/'LY(OHPHQW!���
�� � ��
�� ����FRQVWUXFWRU�SURSV��6LGH3DQH3URSV��^� �� FRQVWUXFWRU�SURSV��6LGH3DQH3URSV� ^
�� ��������VXSHU�SURSV��� �� VXSHU�SURSV��
�� ��������WKLV�VWDWH� �^� �� WKLV�VWDWH ^
�� ������������FXUUHQW3DQH��WKLV�SURSV�SOXJLQV>�@�� �� FXUUHQW3DQH��WKLV�SURSV�SOXJLQV>�@�
�� ��������`�� �� `�
�� � ��
�� ��������ZLQGRZ�DGG(YHQW/LVWHQHU�
KDVKFKDQJH
��WKLV�XSGDWH6WDWH)URP+DVK��� �� ZLQGRZ�DGG(YHQW/LVWHQHU�
KDVKFKDQJH
� WKLV�XSGDWH6WDWH)URP+DVK��
�� ����`� �� `
�� � ��
�� FRPSRQHQW'LG0RXQW���^ �� FRPSRQHQW'LG0RXQW�� ^

�� WKLV�XSGDWH6WDWH)URP+DVK���
�� `
��
�� FRPSRQHQW:LOO8QPRXQW�� ^�
�� ZLQGRZ�UHPRYH(YHQW/LVWHQHU�
KDVKFKDQJH
� WKLV�XSGDWH6WDWH)URP+DVK���
�� `�
�� �
�� UHQGHU�� ^
�� OHW FODVV1DPH �WKLV�SURSV�FODVV1DPH __

� �
�
 � VW\OHV�VLGH3DQH�
�� UHWXUQ �
�� �GLY FODVV1DPH ^FODVV1DPH` UHI ^WKLV�GLY`!
�� ^WKLV�SURSV�SOXJLQV�PDS�WKLV�UHQGHU6LGH3DQH�`
�� ��GLY!
�� ��
�� `
��
�� FKDQJH:LGWK�ZLGWK'HOWD��QXPEHU� ^

�� OHW GLY WKLV�GLY�FXUUHQW� �� OHW GLY WKLV�GLY�FXUUHQW�
�� LI �GLY� ^ �� LI �GLY� ^
�� GLY�VW\OH�ZLGWK GLY�FOLHQW:LGWK � ZLGWK'HOWD �
S[
� �� GLY�VW\OH�ZLGWK GLY�FOLHQW:LGWK � ZLGWK'HOWD �
S[
�
�� ` �� `
�� ` �� `
�� ��
�� XSGDWH+DVK �SOXJLQ1DPH"��VWULQJ� SDWK"��VWULQJ>@� ! ^ �� XSGDWH+DVK �SOXJLQ1DPH"��VWULQJ� SDWK"��VWULQJ>@� ! ^
�� ZLQGRZ�ORFDWLRQ�KDVK �� ZLQGRZ�ORFDWLRQ�KDVK
�� �SOXJLQ1DPH __ WKLV�VWDWH�FXUUHQW3DQH�JHW1DPH��� � �SDWK�"�
�
 � SDWK�MRLQ�
�
����

�� �� �SOXJLQ1DPH __ WKLV�VWDWH�FXUUHQW3DQH�JHW1DPH��� � �SDWK�"�
�
 � SDWK�MRLQ�
�
����

��
�� `� �� `�
�� ��
�� SULYDWH XSGDWH6WDWH)URP+DVK �� ! ^ �� SULYDWH XSGDWH6WDWH)URP+DVK �� ! ^
�� OHW KDVK ZLQGRZ�ORFDWLRQ�KDVK� �� OHW KDVK ZLQGRZ�ORFDWLRQ�KDVK�
�� OHW KDVKHV �KDVK�"�KDVK�VXEVWU������

��VSOLW�
�
�� �� OHW KDVKHV �KDVK�"�KDVK�VXEVWU������

��VSOLW�
�
��
�� OHW SOXJLQ1DPH KDVKHV>�@� �� OHW SOXJLQ1DPH KDVKHV>�@�
�� OHW SOXJLQ �� OHW SOXJLQ

GHPR�VFULSWV�FRQWUROV�VLGH3DQH�6LGH3DQH�WV[��

(a) Event listener memory leak in Rooster JS.
�� �� �
�� �� ��������ZLQGRZ�DGG(YHQW/LVWHQHU�
KDVKFKDQJH
��WKLV�XSGDWH6WDWH)URP+DVK���
�� �� ����`�
�� �� �
�� �� ����FRPSRQHQW'LG0RXQW���^�
�� �� ��������WKLV�XSGDWH6WDWH)URP+DVK����
�� �� ����`�
�� �� �

�� ����FRPSRQHQW:LOO8QPRXQW���^�
�� ��������ZLQGRZ�UHPRYH(YHQW/LVWHQHU�
KDVKFKDQJH
��WKLV�XSGDWH6WDWH)URP+DVK���
�� ����`�

(b) Patch for the memory leak in (a).
Fig. 1: Memory leak in Rooster JS [1] and its corresponding
patch.

updated [2]. In SPAs, instead of re-fetching and loading
entire pages from the server upon each request, just the data
(usually in JSON format) can be retrieved asynchronously
from the server and inserted dynamically into the appli-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

cation, thereby preventing page reloads on navigation and
data fetch requests [3]. Today, almost all contemporary
social media apps make use of this architecture [4].

SPAs, however, are vulnerable to memory bloating due
to their architecture in contrast to MPAs. Literally, SPAs
maintain a single web page for a specific application, and all
objects reside on that single page. Therefore, SPAs inevitably
rely on the garbage collectors of browsers to manage the
memory space. Each browser’s JavaScript engine imple-
ments its garbage collector that is responsible for identifying
and reclaiming memory occupied by objects that are no
longer reachable from the program. However, there is still
a high likelihood of unnecessary objects lingering around
that do not get garbage-collected due to some unintentional
reference, leading to memory leaks. Such leaks might not
be a problem in MPAs, where on each page navigation, the
page refreshes, clearing all the heap. In SPA, however, such
leaks can easily accumulate to several megabytes as a single
page remains alive for several hours or even days.

Because such memory-leaking patterns are not syntac-
tically or semantically invalid code, browsers run the pro-
gram without throwing any errors, and they go unnoticed
in functional testing as well [5]. Consider the syntactically
and semantically correct code scenario in Figure 1(a) from
Microsoft’s roosterjs library [6]. Based on the React frame-
work, the class adds a listener for a hashchange event (an
event that is fired every time the part of the URL after the
hash changes [7]), to each new instance of the class, with-
out ever removing the listener, even after the component
unmounts from DOM. This created a memory leak in the
application.

An important point to note in the above scenario is that if
the listener handler was attached to a local element that does
not have references to any other object, it would have been
automatically cleaned up by the garbage collector (GC) once
the class instance was destroyed. In the above case, however,
the event is attached to the root node (window object),
which the GC never cleans up, even after the instance is
destroyed. A simple fix to this memory leak was applied by
the project developers (Figure 1(b)) by explicitly removing
the event in the component destructor function.

There have been a limited number of studies [8], [9],
[10], [11], [12] on the problem of memory leak detection
in the web domain. These studies focus on automating the
detection of memory leaks, the most relevant and notable
of which is BLeak [12], which is an automated memory
leak detection tool for client-side web applications. BLeak
requires a scenario file written by the users to run the app in
a loop in a headless browser and takes around 10 minutes to
execute. The details of other studies will be presented later
in the Related Work section.

We present LEAKPAIR, an approach to generating
patches that repair memory leaks in SPAs. Unlike typical
automated program repair approaches, LEAKPAIR can be
applied without requiring bug locations or relying on leak-
detection techniques. It automatically detects code snippets
that can potentially cause memory leaks and fixes them
using non-intrusive (i.e., functionality-preserving) transfor-
mation rules we mined from existing code.

While test-driven program repair [13], [14], [15], [16]
(also known as generate-and-validate repair [17]) begins

to work once a bug is detected by test cases, proactive
program repair first applies patches to potential buggy
locations. Then, a proactive approach measures a difference
in properties (such as memory consumption and execution
time) before and after applying the patches. The difference is
provided as evidence of repair instead of validating patches
by test cases, which is done in test-driven program repair
after generating patches. Thus, proactive repair is a special
kind of program repair approach.

In summary, this paper contributes the following:

• Initial Study Contributions: In our earlier work pre-
sented at ASE 2023 [18], we introduced LEAKPAIR,
the first approach that fixes memory leaks in SPAs. In
that work, we showed that for this targeted problem,
a simple pattern-based approach can be effective, as
evidenced by the developers’ acceptance of the patches
generated by LEAKPAIR. Conceptually, we introduced
the idea of proactive repair, which unlike typical au-
tomated program repair approaches, performs repairs
proactively before a problem occurs.

• Initial Study Technique: The study follows a three-
step process; we first mine the common memory leak
patterns in applications developed using Angular [19]
and React [20] (two of the most widely used SPA frame-
works), and the corresponding fix patterns from GitHub

and StackOverflow . We then develop a CLI tool that
parses the given project, traverses the AST (Abstract
Syntax Tree) to detect the leak patterns, and fixes them
with the corresponding fix patterns. Finally, the tool
is evaluated on subjects with fixed memory leaks (to
compare LEAKPAIR’s fixes with those of the develop-
ers), as well as on new subjects. The tool successfully
replicates the fixes for the 19 known leaks and repairs
18 previously unknown leaks, the patches for which are
submitted as PRs to the developers.

• Extended Study Contribution: Our focus in this ex-
tended study is on improving the generalizability of our
approach. To achieve this purpose, we extend the appli-
cation of LEAKPAIR to Vue (another widely used SPA
framework). As a result, our technique is extensively
evaluated on 60 open-source SPAs, each based on either
React, Angular, or Vue. In addition, we increase the
iterations for the memory footprint measurement from
10 (original) to 25 rounds for each subject to ensure the
soundness of the evaluation results.

In addition to the extensive evaluation, we compare
LEAKPAIR with the results generated by GPT-4 [21]
as recent LLMs perform very well for program repair
tasks [22]. This study not only explores the effectiveness
of GPT-4 in fixing memory leaks of SPAs, but also com-
pares the qualitative aspects of patches generated by
LEAKPAIR and GPT-4. The results show the limitation
of LLMs when addressing the memory leak repair task.
To the best of our knowledge, this is the first study
to compare the effectiveness of GPT in fixing memory
leaks.

We also present a brief case study of the SoundCloud
memory leak, underscoring the severity and preva-
lence of memory leaks. Furthermore, to clarify why the
current state-of-the-art in memory leak diagnosis falls

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

short, we have incorporated a comprehensive section
that delves into the heap snapshot analysis technique.
This segment provides a detailed examination of the “3-
snapshot technique”, and demonstrates its limitations,
substantiating the necessity for advancements in this
area.

The paper also revisits the results of the live study
on pull requests, aiming to identify potential factors
influencing the approval or non-approval of automat-
ically generated patch submissions. In addition, we
investigate the case of intrusive memory leak repair,
particularly the case of automated repair of memory
leaks caused by global collections (arrays, sets, etc.),
which can break functionality. We explore how and
why such collections cause memory leaks, the rationale
behind our tool not being able to repair them non-
intrusively, and present potential solutions to address
these edge cases.

Lastly, this paper incorporates an expanded discus-
sion of related works, offering a more holistic view
of the present landscape of automated program repair,
memory leak debugging, and proactive patch genera-
tion.

• Extended Study Technique: Following the approach in
the prior study, we curate three memory leak (and fix)
patterns for Vue (FP5a, FP5b, FP5b in Section III-C). For
this purpose, 11 Vue subjects with known leaks and
12 subjects where LEAKPAIR repaired unknown leaks
are added. The patches for the previously unknown
leaks are submitted as pull requests, as was done in the
original study. The tools and techniques for measuring
memory footprints remain unchanged.

For exploring the case of intrusive patches and gaug-
ing the impact of the intrusion, we follow the evalua-
tion process of our first study; we automate the patch
generation based on the curated fix pattern and run
the SPA containing the global-collection leak along with
the provided test suite, both before and after the patch
application.

The remainder of this paper is organized as follows.
After illustrating the background and motivation of this
study in Section 2, we propose our approach, LEAKPAIR, in
Section 3. Section 4 empirically evaluates our approach and
reports on the experiment results. Section 6 discusses the
comparison of LEAKPAIR against the state-of-the-art pro-
gram repair technique, and intrusive patches for memory
leaks. After surveying the related work in Section 7, we
conclude with directions for future research in Section 8.

2 BACKGROUND AND MOTIVATION

2.1 Single Page Web Applications (SPAs)
This section compares Multiple Page Applications (MPAs)
and Single Page Applications (SPAs) and discusses why
SPAs are vulnerable to memory leaks.

In MPAs, the actions taken by the user on the webpage
(such as navigation, form submissions etc.) trigger HTTP
requests to the server as shown in Figure 2. The server
retrieves data from data sources, merges them with server-
side templates, and then sends the fully rendered HTML
(page) to the client for display. This results in a page refresh

Client

Page switching with
reload

User Interface

Page 1

Page 2

Page 3

HTTP Request for initial
page load

HTML

HTTP Request for user
query

Server

Service Interface

HTML

New
HTML <templates>

Presentation Layer

JSON
data {...}

JSON
data {...}

Business Logic

Database

Fig. 2: Overview of Multi-Page Application (MPA) architec-
ture [3][4].

Client

No reload required

SPA Framework

Single .html file

<templates 1>

JSON
data {...}

<templates 2>

<templates 3>

JSON
data {...}

JSON
data {...}

View switching
without reload

User Interface

View 1

View 2

View 3

HTTP Request
for initial page

load

JSON
data {...}

HTML

AJAX Request
for user query

Server

Service Interface

Business Logic

Database

 (Angular, React,
Vue..)

Fig. 3: Overview of the Single-Page Application (SPA) archi-
tecture.

for each such user interaction. In addition, the user session
and data are persisted on the server; any time the session
state or data need to fetched or updated, the server has
to be queried, and the client (and the user) waits for the
update to be completed on the server, resulting in a poor
app responsiveness [3].

In SPAs (Figure 3), while there may be multiple
JavaScript, CSS, and other resource files, there is typically
a single HTML file that serves as the initial entry point
for the application. Within this single HTML file, templates
are defined by SPA frameworks (Angular, Vue, etc.). These
templates provide placeholders where data can be dynam-
ically inserted or interpolated. Now, instead of the server
generating fully-rendered HTML pages, it only serves data
(often in JSON format) through APIs or other endpoints.
The client then retrieves this data and dynamically merges
it with the templates to generate the final ‘views’. Each such
dynamically generated view represents a distinct ‘page’
the user interacts with; the difference lies in the smooth
transitioning of these pages, as there are no page reloads
during the process. The logic of merging the data with the
right template, routing to the right view, and maintaining
the life cycle of a single view are all defined using the SPA
frameworks [4].

In addition, an SPA caches all the received data from
the server so that the user is still able to interact with the
app in case of poor connection or connection loss, and any
new data can be synced once the connection improves/re-
stores [3].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

2.2 Garbage Collection and Memory Leaks in SPAs

In MPAs, memory leakage may not be a critical issue
since the web pages are switched frequently and, as the
browser switches to a new page, the memory reserved by
the previous page is reclaimed by the garbage collector.
Most modern web apps, however, are single-page apps that
update the content without switching the web page. This
means that a single web page can be active for several
hours or even days [10]. When memory leakage in such
applications accumulates over time, it not only slows the
program execution and causes data processing latency but
may also lead to program crashes and incompatibility with
other applications.

Several existing popular websites (including the libraries
they use) suffer from memory leakage that adversely affects
the responsiveness of the browser. In its blog post [23],
SoundCloud discusses its web application built with React
and Redux that suffered a memory leak (Redux is a state
management library that stores and organises data in a
central location called the ‘store’ [24]). The leak stemmed
from the Redux store continuously growing with each re-
quest, as objects accumulated in the store without removal,
even when no longer needed. While React typically han-
dles garbage collection when components unmount, Redux
maintains references to all data, preventing its release. The
leak was fixed by implementing a custom Garbage Collec-
tor on top of the Redux store, that ensures that only the
necessary entities required by mounted components remain
in the store.

Vilk and Berger [12] reported that more than 99 percent
of Google Chrome crashes on low-end Android phones
are the result of memory issues. They also identified more
than 50 memory leaks in popular applications, including
JavaScript frameworks, and Google applications. Another
leak detection study [25] revealed public-facing SPAs leak-
ing up to 186 MB per interaction.

As will be demonstrated in the next section, since such
leaks are hard to discover and diagnose, developers rather
choose to invest their time and effort in addressing more
‘apparent’ application issues. Finally, oftentimes developers
may wrongly attribute the lagging app behavior to the
user’s browser, internet connection, or even their systems.

2.3 Automated Efforts and State of the Art

Unlike manually managed languages (such as C and C++),
the JavaScript standard (ECMAScript) does not provide any
interface for developers to monitor the memory usage of
the app or manipulate the Garbage Collector, which makes
diagnosing the leaking memory a cumbersome task for
the developers [26]. Consider testimonials [27], [28], [29]
as well as the following comments from SPA developers
on Github and StackOverflow regarding the obscure and
evasive nature of memory leaks and their detection:

I looked at the Chrome Dev Tools and taking heap snapshots to see if there is
an increase in memory and it is apparent that there is when I see the memory
shoot from 123MB to 200+MB after a few actions within the application.
Now this is a good tool for determining whether there is a possible memory
leak or not, but it’s absolutely hard to read and understand, which doesn’t
help me determine where the issues lie [30].

Fig. 4: Memory leak detection in fiit website using heap
snapshots.

This issue has been around for nearly 3 years now. (I usually don’t like to
start a message this way unless I tried something to fix the issue myself...
Which I did here! and failed miserably as it seem quite complex to get to the
bottom of it...[31].

In order to address memory leak issues, the root cause
needs to be diagnosed first. Although there have been au-
tomated techniques and approaches to detect memory leaks
in web applications [8], [9], [10], [11], [12], these techniques
have several limitations, including (1) dependency on the
browser’s heap snapshots, (2) non-trivial effort required for
writing a test-driver script and (3) imprecision. The state-
of-the-art for memory leak detection in SPAs (and websites
in general), hence, is the manual analysis of heap snapshots
via the browser dev tools.

The three-snapshot technique was first introduced by
Loreena Lee and the Gmail team in 2012, to address leaking
memory issues in Gmail [32]. The workflow is as follows:

First, capture the heap snapshot at the start of the
application load, then, interact with the application, take
the second snapshot, followed by the same user actions as
taken before, and finally take the last snapshot. Then, in the
Summary view of heap snapshot 3, perform a comparison
between snapshots 1 and 2 to filter the objects allocated
between the 2 snapshots. Finally, use the Retainer view to
see what is referencing these objects in order to find the
leaking object source.

Figure 4 is a screenshot from one of the web posts of fiit
(UK’s #1 rated fitness app) [33], where the developer shared
their experience of debugging memory leaks on the official
website, using this technique.

This kind of diagnosis, however, is not always accurate
as the actual leak may appear low on the heap snapshot
list and may even have a small retained size, making it
an unlikely target for investigation. Furthermore, reading
through the heap snapshot content can be highly time-
consuming without gaining any valuable information. The
JS engine for browsers organizes the memory consumed
by the web app in a graph of nodes and edges [34]. The
heap snapshot is a flattened version of this graph, in a
JSON format, which, in addition to the actual objects of
the web application, includes meta-data about the format
of the memory graph and the shape and size of every object
contained in the memory graph data (including internal JS
engine objects). Moreover, unnamed objects are frequent,
as JavaScript is dynamically typed, and web page source
code is minified and obfuscated to reduce the size of the
JavaScript code. This leaves too much noise for the user to
be able to drill down to the actual unreachable objects that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

are leaking memory.

2.4 Non-intrusive repair without replicating actual
memory leaks
Non-intrusive patches: Our intuition here is to apply non-
intrusive patches [35] to all potential memory leaks. If the
patches are non-intrusive (i.e., behavior-preserving), it is not
necessary to detect memory leaks before repairing them. As
the patches do not change the behavior of a target program,
it is better to repair as many (potential) leaks as possible,
which eventually improves the maintenance quality. Such
patches are unlikely to introduce new functional bugs and
are often easy to understand. The tradeoff for developers is
obvious: applying these patches is beneficial as they are sim-
ple and non-intrusive. Avoiding the leak detection step is a
huge advantage, as this step is tedious and time-consuming
due to the dynamic analysis involved. A similar approach
was used in [35] to fix performance bugs. However, to the
best of our knowledge, ours is the first work to proactively
repair memory leaks directly in the source code of web
applications.
Pattern-based program repair: To fix the memory leak
issues, we employ pattern-based program repair. While we
considered other types of program repair techniques as well,
they were found to be less suitable for fixing memory leaks
proactively. Most existing APR techniques (e.g.[36], [13],
[15]) are test-driven, meaning that they require a test suite
to drive the search for a patch, while we do not assume
the existence of such a test suite. Note that recent neural
program repair techniques (e.g.[37], [38]) also require a test
suite to validate the generated patches. The issue of the
trustworthiness of the generated patches is also a concern
for such techniques.

In comparison, we curate fix patterns that are likely to
be non-intrusive and apply them to the potential memory-
leak locations of the program. Our pattern-based program
repair can also be viewed as a static-analysis-based repair
similar to FOOTPATCH [39] and SAVER [40], tools fixing
the memory leaks of C/Java1 programs — we statically
detect potential memory-leak locations and fix them. These
techniques typically involve substantial efforts by both tool
developers and users to enable static analysis. For exam-
ple, SAVER requires the semantic models for libraries to
perform static analysis and fixing. By contrast, our pattern-
based approach does not involve any heavyweight analysis
and can be readily applied to any SPA program. As will be
shown in Section 5.2, the patches generated from LEAKPAIR
are often accepted by real-world developers, demonstrating
the practical value of our approach.

3 LEAKPAIR

3.1 Overview
Our approach, LEAKPAIR, consists of two steps: (1) fix
pattern mining, and (2) memory leak repair using the fix
patterns. In the first step, we manually examine program
patches or pull requests addressing memory leaks, together
with commit messages, code reviews available in open-
source projects, and Q&A posts. After identifying common

1SAVER cannot handle Java programs.

and recurring fix patterns from the patches, we implement
an edit script for each pattern, which can generate non-
intrusive patches. In the second step, we scan a target project
(i.e., SPAs) to apply our fix patterns. Each fix pattern can
naturally specify which data or object types are associated
with it. A corresponding edit script can then be applied
accordingly. Each pattern changes all locations, where ap-
plicable, in the target project.

3.2 Mining fix patterns for SPA memory leaks
Since our goal is to identify recurring common patterns of
memory leaks and their corresponding patches in SPAs,
we first collect the most common leaks available pub-
licly, by using specific keyword search on GitHub and
Stackoverflow . Then, we carefully extract common patterns

of leaks and their corresponding patches. Obviously, this is a
manual task and is time-consuming. Nonetheless, numerous
previous studies [16], [41], [35], [42], [43], [14], [15] have
demonstrated that this strategy is effective and useful, as
we can reuse the fix patterns many times once they have
been identified.

Two authors were part of this manual analysis. We use
the following search process to collect issues and discus-
sions relevant to memory leaks: (1) For Stack Overflow,
we search through 1,000 posts whose titles, comments,
or discussions contain a combination of two or more of
the following keywords: ‘leak’, ‘memory usage’ ‘memory
leak’, ‘memory’ and ‘React’, ‘Vue’, ‘Angular’ (depending on
the framework). (2) For GitHub, we search through 1,000
commits, PRs, issues, and discussions containing any of the
above keywords as labels.

After investigating the search results, we collect leak
patterns as per the following procedures: (1) We select
common memory leaks reported at least five times across
GitHub.com and stackoverflow.com , (2) the leaks should be

acknowledged as valid, by at least two developers, (3) we
further narrow down the leaks, which can be reproduced
and tested locally, and (5) five leak patterns were selected,
which are applicable to SPAs.

For each leak pattern identified in the previous step, we
select fix patterns by looking at their original answers (for
StackOverflow) or discussions (for GitHub). For each leak
type, we extract, as fix patterns, the common fix suggestions
in Stack Overflow that are accepted as the answer in at least
two separate posts. From the leak patterns found in GitHub
commits, we select the patches that were approved and
merged in at least two separate projects. Among the above-
selected fix patterns, we further filter the patterns based on
their applicability to SPA projects.

All identified fix patterns are supported by examining
actual memory footprint changes. We compare the memory
footprints of revisions before and after applying the patches.
If there were no differences between before and after

memory footprints, we discard the fix patterns. We examine
the memory footprints of patches applied to SPAs using
MemLab [44].

3.3 Fix patterns
As already discussed in Section 2.2, the general root cause
of memory leaks in SPA is an unused object that lingers

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

in memory due to some unwanted reference that was not
explicitly cleared by the developers. Hence, the fix for
such leaks generally involves cleaning up any unwanted
references to objects that have the potential to be retained
in memory. In the SPA domain, this needs to be done when
a component unmounts from the DOM (in the component
destructor).

Following the procedure in Section 3.2, we identified 7
fix patterns for generating non-intrusive patches for repair-
ing memory leaks in SPAs:
FP1. Unreleased Subscription. In reactive JavaScript (RxJS),
an Observable is a lazily evaluated computation that can
synchronously or asynchronously return zero to (poten-
tially) infinite values from the time it is invoked (sub-
scribed) [45]. This indicates that they can keep outputting
values even after the component is destroyed/unmounted,
unless we explicitly tell them to stop. This means each time
the component containing that subscription is rendered, a
new observable is created in addition to the old one, because
we never explicitly unsubscribed from the previous one.
The stale data keeps getting piled up, never getting garbage
collected, creating a memory leak.

In practice, developers may not always be able to fig-
ure out whether the observable they are subscribing to, is
finite or infinite, and in these cases, it is best to explicitly
unsubscribe when the component unmounts/destroys, just

to be safe. This ensures that the Subscription is closed (if
it was not already) and that proper cleanup is carried out.
Nothing else will happen if it was previously closed.
Fix: The takeUntil() operator allows a notified Observable

to emit values until a value is emitted from another Ob-
servable [46], i.e., the takeUntil() operator completes the
stream it is attached to, when an Observable provided to
itself, emits a value. Thus, if we provide another observer
O2 (see pseudo-code below) as input to the takeUntil()

operator, and in the destructor we make O2 emit a value
(using the next() and complete() methods), that will clear
the subscription and thus prevent the memory leak2.

FP1. Unreleased Subscription

1 // O: Observer
2 // D: Destructor method
3

4 - O1.subscribe(() => {...})
5 + O1.pipe(takeUntil(O2)).subscribe(() => {...})
6 ...
7 + D() {
8 ...
9 + O2.next()

10 + O2.complete()
11 + }
12

13 // Example
14 {
15 + private ngUnsub = new Subject();
16 ...
17 this.userService.getLocal()
18 + .pipe(takeUntil(this.ngUnsub))
19 .subscribe(usr => {this.user = usr;});
20 ...
21 + ngOnDestroy(): void {
22 + this.ngUnsub.next();
23 + this.ngUnsub.complete();
24 + }
25 }

2https://github.com/blackbaud/skyux/pull/376/files

In the above example, the getLocal method is
called on the class field userService, which returns
an observable. The observable is then subscribed to,
and upon receiving results, the returned user object
(usr) is assigned to the user instance variable. The fix
involves the insertion of pipe(takeUntil(this.ngUnsub))

which ensures that subscriptions are cleaned up prop-
erly. By using takeUntil(this.ngUnsub) , the subscription to
this.userService.getLocal() is automatically unsubscribed

(i.e., completed) when this.ngUnsub emits.
FP2. Unremoved Event Listener. The notion of retaining
paths is critical for finding the root cause of a memory leak. A
retaining path is a chain of objects that prevents the garbage
collection of the leaking object. The chain starts at a root
object, such as the global object of the main window. The
chain ends at the leaking object.

Active event listeners will prevent all variables captured
in their scope from being garbage-collected. Once added,
the event listener will remain in effect until (1) it is explicitly
removed with removeEventListener() or (2) the associated
DOM element is removed.
Fix: Unregistering the event listener once the SPA
component unmounts/destroys, by creating a reference
pointing to the event handler H (see pseudo-code below)
and passing it to removeEventListener() method3.

FP2. Unremoved Event Listener
// T: Event target
// Y : Event type
// H: Event handler method
// D: Destructor method

T.addEventListener(Y , H)
...
+ D() {

...
+ T.removeEventListener(Y , H)
+ }

// Example
{
...
document.body.addEventListener(’touchend’,

this.handleMouseUp);
...

+ componentWillUnmount() {
+ document.body.removeEventListener(’touchend’,

this.handleMouseMove);
+ }
}

The example registers a listener on the touchend event
provided by the mobile browser API. The touchend event
is triggered when a finger or touch point is lifted off the
touch surface on devices like smartphones and tablets. The
example code assigns a handler function (handleMouseUp)
that will be called whenever this event occurs.

A memory leak can occur if the developer does not
unregister the event listener when the user leaves the page
view. The fix is to remove the event listener in the compo-
nentWillUnmount function, which acts like a destructor in
the React framework. This function is called just before the
component (view) is unmounted from the DOM.
FP3a. Uncleared Timeout Event. The setTimeout() method
executes a function or specified piece of code once the

3https://github.com/microsoft/roosterjs/pull/921/files

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

specified timeout value is reached. When any object is tied
to a timer callback, it will not be released until the timeout
happens. In certain scenarios, the program’s logic requires
the timer to reset itself; this causes it to run forever, thereby
retaining the references of all the enclosing objects and
disallowing the garbage collector to remove the memory.
Even if the developers explicitly clear the setTimeout()

in code conditionally, there is no guarantee it also caters
for situations where the user navigates away after the
setTimeout() is triggered but before the specified timeout

value is reached.
Fix: Because each setTimeout() has its own memory ref-
erence, we must clear each one individually, using the
clearTimeout() method, passing it the ID returned from

the setTimeout() call (which uniquely identifies each
setTimeout() reference). The patch involves clearing the

timeout method just before the component is about to
unmount from DOM i.e in the component destructor4.
FP3a. Uncleared Timeout Event
// I: Unique Timer ID
// D: Destructor method

- setTimeOut(() => {...})
+ I = setTimeOut(() => {...})
...
+ D() {

...
+ clearTimeOut(I)
+ }

// Example
{
+ caretPositionTimeout: number;
...

- setTimeout(() => { setCaretPosition(el, caretPos); },
1000);

+ this.caretPositionTimeout = setTimeout(() => {
setCaretPosition(el, caretPos); }, 1000);

...
+ componentWillUnmount() {
+ clearTimeout(this.caretPositionTimeout);
+ }
}

In the given example setTimeout is used to execute the
custom setCaretPosition function after 1000 milliseconds
(1 second). However, if the component is unmounted before
the timeout completes, the callback may still try to execute,
potentially leading to a memory leak.

The fix involves storing the timeout ID returned by
setTimeout in a class property (this.caretPositionTimeout).
This allows us to reference this specific timeout
later. Then, just before the component unmounts (in
the componentWillUnmount method), the clearTimeout

function is called with the stored timeout ID
(this.caretPositionTimeout). This cancels the timeout if
it is still pending, preventing the callback from executing
after the component has unmounted.
FP3b. Uncleared Interval Event. The setInterval()

method repeatedly calls a function or executes a code
snippet, with a fixed time delay between each call. Even
after the component is unmounted from the DOM, the
setInterval timer will keep on ticking (unless we explicitly
clear the interval in the code), trying to update the state
of a component that’s effectively gone, thereby causing

4https://github.com/MTES-MCT/monitorfish/pull/953/commi
ts/1dc01c0d82261bf05277366d954fa5d912632091

memory leakage [47]. Even if the developers clear these
interval functions in the code on some condition, there is
no guarantee that the clearing method will get a chance to
execute before the user navigates away.
Fix: Each interval has a separate reference in memory, so we
need to clear each individually, using the returned ID from
the setInterval() method call, which uniquely identifies
the interval method call. The patch involves clearing the
timer just before the component is about to be destroyed
i.e., in the component destructor5.

FP3b. Uncleared Interval Event
// I: Unique setInterval event ID
// D: Destructor method

- setInterval(() => {...})
+ I = setInterval(() => {...})
...
+ D() {

...
+ clearInterval(I)
+ }

// Example
{

...
useEffect(() => {

- setInterval(() => { setCount((prevCount) => {
return prevCount - 1});

}, 1000);

+ const intervalId = setInterval(() => {
setCount((prevCount) => { return prevCount - 1});

}, 1000);

+ return () => clearInterval(intervalId)
}, []);
...

}

In the example snippet, setInterval is used within a
useEffect hook (a React utility) to decrement a counter every
second. However, this interval is never cleared, meaning the
interval will continue to run even after the component is
unmounted, leading to a memory leak.

The fix is similar to FP3a: The interval ID returned by
setInterval is stored in a constant (intervalId). This allows
us to reference this specific interval later. Now in React, the
useEffect hook returns a cleanup function that is executed

when the component is unmounted or before the effect is
re-executed. Inside this cleanup function, clearInterval is
called with the stored interval ID (intervalId). This stops
the interval from continuing to run after the component is
unmounted.
FP4. Uncancelled Animation Frame Requests. The
requestAnimationFrame() Web API method helps determine

the count of frames per second to allocate an animation, and
execute the provided callback to perform that animation,
before the actual screen loads [48]. Since it is used for
creating animations on web pages, these are usually called
recursively, which again leads to the risk of their execution
post component destruction, retaining all objects in its
callback function, even after they are no longer needed.
Fix: Similar to timers, each requestAnimationFrame() call also
returns an ID unique to that specific request, that we can use
to ensure the request is cancelled just before the component

5https://github.com/MTES-MCT/monitorfish/pull/953/files

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

destroys6.

FP4. Uncancelled Animation Frame Request

// I: Unique requestAnimationFrame ID
// D: Destructor method

- requestAnimationFrame(() => {...})
+ I = requestAnimationFrame(() => {...})

+ D() {
...

+ cancelAnimationFrame(I)
+ }

// Example
{

...
- requestAnimationFrame(this.animateSecondaryWaves);
+ this.frameId =

requestAnimationFrame(this.animateSecondaryWaves);
...

+ componentWillUnmount() {
+ cancelAnimationFrame(this.frameId);
+ }
}

In the original version of the example code,
requestAnimationFrame is used to schedule the custom
animateSecondaryWaves method to be called before the next

repaint. However, there is no reference stored to this request,
and it is never canceled. This can lead to a memory leak if
the animation continues to request new frames even after
the component is unmounted.

To fix this, the request ID returned by
requestAnimationFrame is stored in a class property

(this.frameId). This allows the request to be referenced
later. The componentWillUnmount lifecycle method is called
just before the component is removed from the DOM. Inside
this method, cancelAnimationFrame is called with the stored
request ID (this.frameId). This cancels the scheduled
animation frame request, ensuring that the animation does
not continue to request new frames after the component is
unmounted.

FP5a. Unremoved Component Instance Event Listeners.
When the $on method is applied to a Vue component using
this.$on(event, callback) 7 8 it means the component is

listening for an event and will execute the provided callback
function when this event is emitted. However when a com-
ponent listens for events using this.$on() , it’s important to
clean up those listeners when the component is destroyed
to prevent memory leaks.

Fix: Similar to previous fixes, the fix here is to remove the
instance listener using the $off() method just before the
component is destroyed9.

6https://github.com/carbon-design-system/carbon-addons-iot-r
eact/pull/2119/files

7https://github.com/lan-ui/lan-ui/blob/a28f545e75dd8f444f7fd
ded965a27df9ac8dbe3/src/components/checkbox-group/checkbox-g
roup.vue#L83

8https://github.com/ElemeFE/element/blob/290e68ea6aa6c56b
7d83182b650e3be4f77ff1b0/packages/menu/src/menu.vue#L318

9https://github.com/nasa/openmct/pull/7070/commits/053f1a
846c22427200e99a72fa13fac88e9a31ae#diff-501283c5c1b662d1c7a9e2215
ca097c059991e1a0fe1d2736451be7d44c62747

FP5a. Unremoved Component Instance Event Listener

// E: Event
// C: Callback
// D: Destructor method

...
this.$on(E, C);
...
+ D() {
+ this.$off(E, C);
+ }

// Example
{

...
mounted() {

this.$on(’submenu-click’, this.handleSubmenuClick);
},
...

+ beforeUnmount() {
+ this.$off(’submenu-click’, this.handleSubmenuClick);
+ }
}

In Vue, event listeners are managed within the
component instance (this). In the original version of
the example code, an event listener is added for the
submenu-click event in the mounted lifecycle hook of Vue

(this.$on(’submenu-click’, this.handleSubmenuClick)). This
means that when the component is mounted, it starts lis-
tening for submenu-click events and executes the custom
handleSubmenuClick method whenever the event is triggered.

Without proper cleanup, the event listener remains ac-
tive even after the component is unmounted. This can lead
to a memory leak because the event listener continues to
hold a reference to the unmounted component, preventing
it from being garbage collected.

The beforeUnmount lifecycle hook in Vue is called right
before the component is unmounted from the DOM.
The memory leak is fixed by calling this.$off with the
event name (submenu-click) and the handler method,
(this.handleSubmenuClick) in this hook, ensuring that the
event listener is properly cleaned up.

FP5b. Unremoved Root Instance Event Listener. In Vue.js,
this.$root refers to the root Vue instance, the top-level

Vue component instance which is the parent of all other
components. this.$root.$on(event, callback) is a method
used to listen for custom events emitted from the root Vue
instance10 11. Similar to the previous case, it will execute
the provided callback function when the event is emitted.
However, just like the regular Vue component, the root
component also needs to clean up the listeners when it is
destroyed, to prevent memory leaks.
Fix: The fix is similar to FP5a, i.e to remove the listener
using the $off() method just before the root component is
destroyed12.

10https://github.com/lan-ui/lan-ui/blob/a28f545e75dd8f444f7fd
ded965a27df9ac8dbe3/src/components/checkbox-group/checkbox-g
roup.vue#L83

11https://github.com/bootstrap-vue/bootstrap-vue/blob/5173dd
19f6f46dc9d125cd7233fb59ccd2ef9296/docs/components/quick-links
.vue#L55

12https://github.com/Ocelot-Social-Community/Ocelot-Social/co
mmit/54ca9a6e0c9ebf7a39516622cb95f86c793176f5

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

FP5b. Unremoved Root Instance Event Listener
// E: Event
// C: Callback
// D: Destructor method

...
this.$root.$on(E, C);
...
+ D() {
+ this.$root.$off(E, C);
+ }

// Example
{

...
mounted() {

this.$root.$on(’refetchPostComments’, () => {
this.refetchPostComments()

})
},
...

+ beforeUnmount () {
+ this.$root.$off(’refetchPostComments’)
+ }
}

In the example code, this.$root.$on(’refetchPostComments’,

...); registers an event listener for the custom event
‘refetchPostComments’ on the root Vue instance ($root).
The arrow function () => this.refetchPostComments()

serves as the callback function that will be executed
when ‘refetchPostComments’ event is emitted , during the
mounted() lifecycle hook of the Vue component.

Again, if the event listener is not properly removed
when the component is destroyed or unmounted, it
can lead to memory leaks because JavaScript engine
will keep holding references to the callback function
(() => this.refetchPostComments()) and associated data

structures in memory.
To prevent this, in the beforeUnmount() hook,

this.root.off(’refetchPostComments’) is called to remove
the event listener for ‘refetchPostComments’ event from
the root Vue instance ($root). This ensures that the
callback function (() => this.refetchPostComments();)

and associated resources are properly cleaned up when the
component is about to be destroyed.

FP5c. Unremoved Event Bus Listener. In Vue.js, an
event bus is a way to communicate and pass data between
components that are not directly related or have a parent-
child relationship. Event bus is created as a new Vue
instance (new Vue()). Components can then emit events
on the event bus, which can be listened to by any other
component that is also using the same event bus [49].
However if a component subscribes to an event on the
event bus but fails to unsubscribe when the component
is destroyed, the event listener will continue to exist in
memory, even though the component itself is no longer
used. This can lead to a build-up of event listeners over
time and eventually cause memory leaks.
Fix: The fix is similar to the above 2 cases, where the event
needs to be removed from the event bus using the $off()

method just before the root component is destroyed13.

13https://github.com/n8n-io/n8n/pull/6021/files#diff-323013d0d
7d5d8ad10da80e95dd88d67aba4550d6bca4f64b3f95375adc710cf

TABLE 1: Distribution and applicability of our fix patterns
across the three popular SPA frameworks.

Fix Pattern React Angular Vue

FP1 Applicable N/A N/A
FP2 Applicable Applicable Applicable
FP3 Applicable Applicable Applicable
FP4 Applicable Applicable Applicable
FP5 N/A N/A Applicable

FP5c. Unremoved Event Bus Listener
// B: Event bus
// E: Event
// C: Callback
// D: Destructor method

...
B.$on(E, C);
...
+ D() {
+ B.$off(E, C);
+ }

// Example
import { EventBus } from ’../../services/EventBus’
...
{

...
mounted() {

EventBus.$on(’refreshPeerList’,
this.debounceFetchPeers)
},
...

+ beforeUnmount () {
+ EventBus.$off(’refreshPeerList’,

this.debounceFetchPeers)
+ }
}

In the example, the EventBus.$on(’refreshPeerList’,

this.debounceFetchPeers) is used to register an event listener
(debounceFetchPeers()) that listens for the custom event
‘refreshPeerList’ emitted on the global EventBus.

By removing the listener from the bus using
EventBus.$off in the beforeUnmount() hook, Vue ensures

that resources associated with event handling function
(this.debounceFetchPeers) are properly cleaned up when the
component is about to be destroyed.

Our fix patterns are highly applicable to popular SPA
frameworks as listed in Table 1: React, Angular, and Vue.
Notably, the majority of fixes are framework-agnostic. Even
for those that are technically framework-specific (unsub-
scribing from subscriptions in Angular or removing event
listeners from the EventBus in Vue), the underlying concepts
remain consistent across frameworks. These fixes primarily
address resource cleanup and memory management, mak-
ing the approach broadly adaptable with minimal manual
effort once the core principles are understood.

3.4 Edit scripts for the fix patterns
For each individual fix pattern, we create a corresponding
edit script to actually generate patches for potential memory
leaks. An edit script is another program that parses the tar-
get program and locates potential leaking objects, where we
apply the fix pattern. Each edit script has two components:
(1) a potential leak object locator and (2) a patch writer.
Creating edit scripts is a common procedure when applying
a pattern-based program repair technique [16], [14], [50],

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

[15], [35]. Therefore, we implement the scripts for our tool,
which are available in our replication package [51].

Coverage of the patterns
The 7 fix patterns cover most of the fixed memory leaks
we have examined. Following the procedures described in
Section 3.2, we manually reviewed 124, 64 and 40 reported
leaks in React, Angular and Vue applications respectively,
that have been confirmed and fixed by the developers. Our
fix patterns can non-intrusively fix 102 out of 124 (82%) leak
types in React, 57 out of 65 (88%) already-known Angular-
related memory leaks and 32 out of 40 (80%) known leaks
in Vue. The full list of known memory leak bugs examined
is available in our replication package [51].

3.5 Applying fix patterns
As the second step, LEAKPAIR applies the fix patterns ex-
tracted in the first step (Section 3.2). Basically, we assume
that one can apply LEAKPAIR to the whole project by
scanning the source code tree of the project, which implies
that the edit scripts explained in Section 3.4 are executed for
each file. Specifically, it follows the following procedure.

• Parsing and Detecting: LEAKPAIR makes use of the
Babel compiler [52] in conjunction with Facebook’s
jscodeshift [53] to traverse through the JS file (in the case
of a single file path) or all JavaScript files from the root
of the given project path. For each file, it extracts the
AST by leveraging the Babel compiler. During the AST
traversal, LEAKPAIR detects Angular, React, and Vue
components by matching their syntax definition. Once
a component from these frameworks is identified, it
detects whether the component implements any of the
five memory leak patterns by traversing the AST, visit-
ing each node, and matching the patterns illustrated in
Section 3.3.

• Creating Patches: If a leak pattern is matched, it tracks
the file name as well as how many objects are leaking
due to that leak type, i.e., are following the same pat-
tern, in that specific component. It then generates and
adds the fix in the AST. After the patch is successfully
applied, it updates the count of potentially leaking ob-
jects for that leak type, in the project/file. Finally, it then
converts the AST back to source code by leveraging the
Recast [54] library.

• Repeating and Reporting: LEAKPAIR repeats this pro-
cess for all the files if a project path was specified;
otherwise, the processing completes there. At the end
of the execution, it prints out the repaired file name(s)
and the total count of each leak type in the console
(from which the LEAKPAIR command was executed) as
well as in an external json file (if an output path was
specified in the command).

3.6 Non-intrusive patch generation
To ensure that LEAKPAIR generates non-intrusive patches
for memory leaks in SPAs, we enforce the following con-
ditions in addition to the steps of standard pattern-based
program repair techniques [16], [15]:

• Localizing without test cases: Since LEAKPAIR proac-
tively generates patches for memory leaks in SPAs, it

does not rely on external fault localization techniques
usually based on test suites. Instead, our approach
scans specific objects in the source code. For example,
FP1 detects all Observable objects in the target SPA.

• Avoiding redundant fix: Among the detected target
objects, some of them are correctly used and mem-
ory leaks are prevented, where LEAKPAIR does not
need to generate corresponding patches, for example,
a subscription to an observable that is already released.
LEAKPAIR remains idempotent by leaving such code
unchanged. LEAKPAIR achieves this through a simplis-
tic AST parsing approach, traversing the AST to iden-
tify nodes and relationships matching leaky patterns
and applying fixes only where necessary. For example,
if an event listener is added but not removed in the
destructor, LEAKPAIR will apply the fix. However, if
it detects that the corresponding removeEventListener is
already called with the correct target and listener nodes,
it will leave the code as is.

• Checking non-intrusiveness: For each generated patch,
LEAKPAIR examines whether the patch breaks any
functionality. As the regression test suites are often
available for a target SPA, our approach runs the suites
to find any behavior changes. Although test cases may
not guarantee complete behavior integrity, the test re-
sults may show the correctness of key functionalities
for the target SPA.

4 EVALUATION

4.1 Research Questions

Our experiments investigate the following research ques-
tions:

1) RQ1. (Effectiveness) How effective is the tool at mini-
mizing/eliminating memory leaks?

2) RQ2. (Acceptability) How useful are generated
patches, as perceived by developers?

3) RQ3. (Non-intrusiveness) What is the impact of our
tool on test suite execution results?

4) RQ4. (Comparison against GPT-4) How does LEAK-
PAIR compare to GPT-4 in terms of their performance?

The first research question is designed to assess the
amount of memory reduction when applying LEAKPAIR to
SPAs. For this RQ, we collect a set of known memory leaks
and another set of unknown leaks in open-source projects as
experiment subjects. We apply our tool to the subjects and
examine their memory footprints before and after repair.

While RQ1 assesses the effectiveness, RQ2 focuses on
whether the patches generated by LEAKPAIR can be ac-
cepted by the developers of the open-source projects. As
the unknown leaks used in the experiments for RQ1 are in
fact new defects, we report them as new pull requests and
see whether they are merged or accepted.

As LEAKPAIR is designed to generate non-intrusive
patches, it is necessary to assess whether the patches disrupt
the functionality of the target subjects or cause compila-
tion errors. Therefore, we designed RQ3 to assess non-
intrusiveness. Our experiments for this RQ try to compile
the subject programs used in the previous RQs and run the
test cases already given for the programs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 2: Subjects with unknown memory leaks.
ID Program Type SPA Framework Commit Hash

U1 react-zoom-pan-pinch [55] Library React fdc030
U2 Angular Extentions Elements [56] Library Angular d9a4e4
U3 Evergreen [57] Framework React 82c3a8
U4 ngx-datatable [58] Library Angular 6184c9
U5 react-multi-carousel [59] Library React 525793
U6 codetekt (Frontend) [60] Website Angular 7b8289
U7 skbkontur/retail-ui [61] Framework React 32f3cf
U8 Aam Digital [62] Web app Angular 304ff9
U9 Replay’s DevTools [63] Library React 24d10f
U10 ngx-bootstrap [64] Framework Angular 663c70
U11 DefichainIncome [65] Web app Angular 911509
U12 Collosal [66] Web app React 798e7a
U13 The Book Thieves [67] Web app React 6de1a6
U14 Mempool [68] Web app Angular 5905ee
U15 DSpace [69] Web app Angular b29dd6
U16 PrimeNG [70] Library Angular 085a4e
U17 Formly [71] Library React e262fb
U18 Foxglove Studio [72] Web app React d49827
U19 BootstrapVue [73] Framework Vue 5173dd
U20 Chatwoot [74] Framework Vue 11b27f
U21 think-vuele [75] Library Vue 2e256f
U22 vue-admin-better [76] Framework Vue f34069
U23 Vue Grid Layout [77] Library Vue 6e5367
U24 Weaverbird [78] Framework Vue 1aa799
U25 AutoAnimate [79] Library Vue b62aa8
U26 vue-snap [80] Library Vue 2cb14b
U27 Element [81] Library Vue 290e68
U28 lan-ui [82] Framework Vue a28f54
U29 iView [83] Library Vue c3f57f
U30 Buefy [84] Library Vue b469a3

TABLE 3: Subjects with known memory leaks.
ID Program Type SPA Framework Commit Hash

K1 react-zoom-pan-pinch [55] Library React 6e35b3
K2 Fundamental Library for Angular [85] Library Angular be9629
K3 react-multi-carousel [59] Library React 5d252d
K4 Angular Components [56] Framework Angular 1bbb29
K5 Material UI [86] Framework React e92b1c
K6 Angular Components documentation [87] Website Angular e8cb0d
K7 Rooster [6] Library React c3f2f0
K8 Octant [88] Framework Angular b079ad
K9 Evergreen [57] Framework React a716f4

K10 Transloco [89] Library Angular 2338a0
K11 MonitorFish [90] Website React 6e35b3
K12 react-customizable-progressbar [91] Library React 4b0af1
K13 Secret Network Oracle Client [92] Library React 5d252d
K14 Mempool [68] Website Angular 631de8
K15 Momentum Mod [93] Website Angular 203707
K16 PatternFly React [94] Library React f4d651
K17 React Number Format [95] Library React 11de23
K18 Help Scout Design System [96] Library React b079ad
K19 mappit [97] Website React be6979
K20 Vue-Tree [98] Library Vue c53d34
K21 Open MCT [99] Web app Vue cd5699
K22 clr.fund [100] Web app Vue 8184bc
K23 web-mapviewer [101] Web app Vue e97f4c
K24 InstaLog [102] Web app Vue 89bba5
K25 n8n [103] Web app Vue 053a4f
K26 Element [81] Library Vue 23e818
K27 Prefect UI [104] Framework Vue 6e889b
K28 PyCon TW official website [105] Website Vue 268e12
K29 2N.fm [106] Web app Vue 891d9a
K30 Documentation for Vue 3 [107] Website Vue 5b111e

Finally, RQ4 is to compare LEAKPAIR with GPT. Re-
cent studies have shown the effectiveness of GPT in fix-
ing functionality bugs, and in this work, we compare the
effectiveness of GPT in fixing memory leaks of SPAs with
LEAKPAIR. To the best of our knowledge, this is the first
study to compare the effectiveness of GPT in fixing memory
leaks of SPAs. In this study, we use GPT-4, which is the latest
version of GPT at the time of conducting the experiments.

4.2 Experiment Setup
We used the following experiment design to answer the
research questions described in Section 4.1.

4.2.1 Subjects
To assess the effectiveness of our tool, we collected SPAs
based on the following criteria:

• Maintained. We choose projects that are still being
maintained and whose last update was less than a year
ago. Archived projects are not considered.

• Number of contributors. Projects with at least 10 con-
tributors are selected. Personal projects are not taken
into account.

• Number of commits. The selected projects have at least
100 commits on their GitHub repository.

• Popularity. Projects with at least 10 stargazers, watch-
ers, or forks are selected.

• Framework. The selected projects should use either
React or Angular as their base framework, as our target
is SPAs.

Based on the above criteria, we collect a set of projects
with unknown new memory leaks and another set of projects
with already known leaks (i.e., those fixed by the develop-
ers). The projects with already known leaks are necessary to
show whether our tool can reproduce the patches generated
by the developers of the projects. Other projects are collected
to assess the effectiveness of our tool in discovering and
repairing new and unknown memory leak patterns.

As a result, 60 projects are selected as the subjects for our
experiments to assess LEAKPAIR; 30 projects have unknown
new memory leaks while 30 projects out of them have
already known memory leaks. Tables 2 and 3 list the 30
unknown and 30 known subjects, respectively.

4.2.2 Repairing memory leaks
To answer RQ1, our first experiment applies our tool to the
subjects described in Section 4.2.1. We run LEAKPAIR on the
root of each subject so that it scans the project directories
and identifies JavaScript files. For each source code file, the
tool tries to change the file by applying each pattern. Our
tool addresses all locations if applicable.

After applying LEAKPAIR, we then measure the memory
footprints. Because we need to run the target subject to
determine memory consumption, we create a scenario file
for each subject. Using scenario files is a common procedure
when measuring the memory consumption of web applica-
tions. For example, BLeak [12] and MemLab [44], the most
recent techniques to detect memory leaks, require scenario
files to run the target web applications. The scenario files
used for each subject are available in our replication pack-
age [51].

To compare the memory consumption, we compute the
memory footprints before and after applying LEAKPAIR.
For each subject, the corresponding scenario file is exe-
cuted 25 times with loop=10 (i.e., 25 × 10 times in total
for each subject) since a single loop may not accurately
reveal the memory consumption. We then collect memory
consumption in megabytes (MB) and the number of object
clusters [44], where a cluster is the collection of all retainer
paths for all the leaking objects due to a single leak origin.
Applying the Mann-Whitney U test [108], we compute the
statistical significance of the differences between values
before and after patches. Note that this is not a stage of
LEAKPAIR; rather, this is only for the evaluation.

4.2.3 Reporting generated patches
As the unknown memory leaks are basically newly found
bugs, we report the leaks to the repositories of the subjects.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

For each patch generated by our tool, we create a pull
request with the patch and memory footprints before and
after applying the tool. The outcome of the reported pull
requests can be Agreed , Disagreed , or Ignored . The 3 types
of outcomes for our PRs are recorded to answer RQ2.

4.2.4 Running test cases on patches
To figure out whether the patches generated by LEAKPAIR
break the functionality of the subjects, we execute the test
cases available in the subjects and count the number of
passing and failing cases. As most of the popular open-
source projects maintain (regression) test suites, we simply
run the test cases included in the subjects. Many subjects
use test automation frameworks; in that case, we resort
to those frameworks; otherwise, we follow the instructions
available in the contribution guide for each subject. We also
compare the number of passing/failing test cases before and
after applying LEAKPAIR. The results of this experiment can
answer RQ3.

4.2.5 Repairing memory leaks with GPT
In this study, we primarily focus on evaluating the patch
generation capability of GPT-4, while assuming a separate
process for fault localization. That is, we directly pass a code
snippet causing a memory leak to GPT and ask it to fix the
leak. This approach is similar to the perfect fault localization
assumption widely adopted in the APR literature [15], [22].
Under the perfect fault localization assumption, APR tools
are provided with the exact fault location and generate a
patch to fix it. The perfect fault localization assumption
is used under the following APR scenario. First, a ranked
list of suspicious locations is generated by using a fault
localization technique. Then, the APR tool iterates over this
list and generates patches for each suspected location. This
approach works on the premise that a fault can be confined
to a single location, whether it be a single line, a single
function, or a single file.

We use the above perfect fault localization assumption
because it is difficult to perform fault localization with GPT
due to the limited size of the context window—GPT-4’s con-
text window size is bound to 8,192 tokens. Assuming perfect
fault localization, we focus on the patch generation capabil-
ity of GPT-4. In comparison, recall that LEAKPAIR performs
fault localization and patch generation simultaneously by
scanning the AST of each source code file in a project; the
size of the program is generally not a concern for LEAK-
PAIR. Due to the GPT’s context-window size limitation, we
provide a more favorable condition for GPT compared to
LEAKPAIR by assuming perfect fault localization.

We reuse the 30 projects with known memory leaks
(see Table 3) used in RQ1. Recall that for those projects,
developer-written patches for memory leaks are available.
We apply GPT to the program location modified by the
developers, as described in the previous paragraph. Mean-
while, we do not reuse the unknown subjects listed in
Table 2 for this experiment, due to the lack of developer-
written patches.

Our experiment for this RQ asks GPT to generate patches
with the following procedure. The faults in our subjects
are confined to a single location with diverse granularity.
In some subjects, the fault is confined to a single function

(i.e., the developer-written patch modifies a single function),
while in others, it is confined to a single class or a single
file. Depending on the granularity of the developer-written
patch, we pass the corresponding code snippet to GPT.
For instance, if the developer-written patch is confined to
a single function, we pass the buggy function to GPT. If
the developer-written patch is confined to a single class, we
pass the buggy class to GPT. In eight subjects out of 30, the
developer-written patches modify multiple files. In seven
out of these eight subjects, the developer-written patches
consist of multiple atomic patches, where each atomic patch
is independent of the others and is confined to a granularity
smaller than a file. For these seven subjects, we treat each
modified file separately and decide the granularity based on
the developer-written patch for that file. In the remaining
subject (i.e., K20), an atomic patch encompasses multiple
files and we exclude this subject from our evaluation.

For each file subject to repair, we collect 10 patches using
GPT-4 by running the prompt 10 times. Figure 5 shows the
prompt template we use for the function-level granularity.
We use similar prompts for class- and file-level granularities.

A JavaScript function provided below may contain memory leak(s). Please,
fix all memory leaks that you can find.

1. If you cannot find any memory leaks, just reply “no leaks detected”.
2. If you found a memory leak, modify the provided JavaScript function and
fix the memory leak.
3. You should return the entire function that I provided after fixing the
memory leaks.
4. Do not include comments like “// Rest of your component here....”, “/* rest
of JSX class here */”, or “/* rest of the component remains unchanged */”
because you SHOULD return the fixed function entirely.
5. Surround the fixed function with triple backticks (```).
6. Do not include any explanations.

JavaScript function:

```
[the function subject to repair]
```

Fig. 5: Prompt template for function-level granularity. “[the
function subject to repair]” is replaced with the code snip-
pet. The templates for the other granularities are similar.

We consider a patch plausible if it satisfies the following
conditions: (1) the subject runs without any errors when the
patch is applied, and (2) there is no regression error. For
each plausible patch, we measure the memory consumption
using MemLab before and after applying the patch. We
consider a patch valid if it reduces the memory consumption.

5 RESULTS

This section presents and analyzes the results of experi-
ments to answer the research questions described in Sec-
tion 4.

5.1 RQ1: How effective is LEAKPAIR?

The patches generated by LEAKPAIR can reduce memory
consumption, as shown in Tables 4 and 5. We apply the tool
to each subject listed in Tables 2 (projects with unknown
memory leaks) and 3 (projects with already known leaks)
according to the procedure described in Section 4.2.2. In the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 4: Memory consumption results before and after applying LEAKPAIR to the subjects in Table 2.

ID Leak Patterns Leaked Objects Leaked Objects Leak Object Heap Size Before Heap Size After Total Heap
Before applying LEAKPAIR After applying LEAKPAIR Reduction applying LEAKPAIR applying LEAKPAIR Size Reduction

U1 FP3 5.5 clusters 5 clusters 0.5 cluster 31.9 MB 31.5 MB 0.4 MB (1.3%)∗
U2 FP1, FP2 9 clusters 8.5 clusters 0.5 clusters 17.3 MB 16.7 MB 0.6 MB (3.5%)∗∗
U3 FP4 5 clusters 3 clusters 2 clusters 34.3 MB 29.2 MB 5.1 MB (14.9%)∗∗
U4 FP3, FP4 8 clusters 7 clusters 1 cluster 367.1 MB 364.9 MB 2.2 MB (0.6%)
U5 FP3 4 clusters 3.5 clusters 0.5 cluster 20.9 MB 20.9 MB 0 MB (0%)∗
U6 FP1, FP3 10.5 clusters 9 clusters 1.5 clusters 44.2 MB 43.5 MB 0.7 MB (1.6%)
U7 FP3 6.5 clusters 5.5 clusters 1 clusters 229.2 MB 222.8 MB 6.3 MB (2.7%)∗
U8 FP1 2 clusters 2 clusters 0 clusters 322.5 MB 265.8 MB 56.7 MB (17.6%)∗∗
U9 FP3 5 clusters 3 clusters 2 clusters 27 MB 26.4 MB 0.6 MB (2.2%)
U10 FP1 6.5 clusters 6 clusters 0.5 clusters 101.4 MB 101 MB 0.4 MB (0.3%)
U11 FP1 5 clusters 4 clusters 1 cluster 60.5 MB 60.4 MB 0.1 MB (0.1%)
U12 FP2 6 clusters 5 clusters 1 cluster 83.7 MB 40.7 MB 43 MB (51.4%)
U13 FP3 2 clusters 1 cluster 1 cluster 56.9 MB 54.3 MB 2.5 MB (4.4%)
U14 FP1, FP4 2 clusters 1 cluster 1 cluster 88.9 MB 63.6 MB 25.3 MB (28.3%)∗∗
U15 FP1 4.5 clusters 4.5 clusters 0 cluster 69.05 MB 68.65 MB 0.4 MB (0.6%)∗∗
U16 FP1 6.5 clusters 5.5 clusters 1 cluster 20.2 MB 19.5 MB 0.7 MB (3.5%)
U17 FP1, FP2 2.5 clusters 2.5 clusters 0 cluster 13.8 MB 13.5 MB 0.3 MB (2.5%)
U18 FP2, FP3 6 clusters 6 clusters 0 clusters 61.8 MB 61.8 MB 0 MB (0%)
U19 FP5b 7 clusters 4 clusters 3 clusters 198 MB 163.6 MB 34.4 MB (17.4%)
U20 FP2, FP5c 0 clusters 0 clusters 0 clusters 295.2 MB 281.3 MB 13.9 MB (4.7%)
U21 FP5c 2 clusters 1 clusters 1 clusters 48.8 MB 39.6 MB 9.2 MB (18.9%)
U22 FP2, FP5c 11 clusters 11 clusters 0 clusters 181.7 MB 176.4 MB 5.3 MB (3%)*
U23 FP2 0 clusters 0 clusters 0 clusters 16.7 MB 16.6 MB 0.1 MB (0.6%)*
U24 FP2 6.5 clusters 6 clusters 0.5 clusters 216.9 MB 213.6 MB 3.3 MB (1.5%)
U25 FP2, FP3 11 clusters 2 clusters 9 clusters 12.6 MB 13.5 MB 0 MB (0%)**
U26 FP5a 2.5 clusters 2.5 clusters 0 clusters 21.1 MB 20.8 MB 0.4 MB (2.3%)
U27 FP2, FP5c 3 clusters 3 clusters 0 clusters 65.7 MB 63 MB 2.7 MB (4.1%)
U28 FP2, FP5c 0 clusters 0 clusters 0 clusters 24.4 MB 24.4 MB 0 MB (0%)
U29 FP2, FP5a 7 clusters 7 clusters 0 clusters 161.5 MB 158.9 MB 2.6 MB (1.6%)**
U30 FP2, FP5c 11.4 clusters 10.6 clusters 0.8 clusters 401.6 MB 401.6 MB 0 MB (0%)

∗: p-value < 0.05, ∗∗: p-value < 0.01.

result tables, the Leak Patterns column lists the fix patterns
(see Section 3.3) successfully applied to each subject. The
Leaked Objects ∗ columns represent the number of clusters

in which objects are potentially leaking the memory space,
before and after applying our tool, and the difference. The
Heap Size ∗ columns show the average heap size based on

the 25 iterations before and after applying our tool, and the
difference.

As shown in Tables 4 and 5, respectively, LEAKPAIR re-
duces memory consumption in the majority of the subjects.
The statistical significance of the differences are denoted as
∗:p-value<0.05 and ∗∗:p-value<0.01.

The reduction is relatively larger for the subjects with
unknown leaks. This seems to be because the subjects
with known leaks tend to be better maintained in terms
of memory management than the subjects with unknown
leaks. Note that for the subjects with known leaks, we
reverted the patches applied by the developers to introduce
the leaks. The developers for these subjects are aware of
the leaks and are likely to pay more attention to memory
management, which could explain the smaller reduction in
memory consumption.

In contrast to the general pattern, memory consumption
increases in subject U25 after applying LEAKPAIR, although
the increase is only 0.9 MB. However, the number of leaked
clusters decreased from 11 to 2, indicating that the applied
fix is effective. A possible explanation for the increase in
memory consumption despite the reduction in the number
of leaked clusters is that while the fix eliminated 9 leaked
clusters out of 11, the remaining two clusters may contain
garbage objects that are not collected by the garbage col-
lector yet. Note that MemLab, the tool we used to measure
memory consumption, can be conservative when detecting

leaked objects. Although garbage objects will be eventually
collected, they may temporarily increase memory consump-
tion until the garbage collector runs.

The plots in Figures 6 and 7 illustrate the changes in
the memory heap size before and after the leak fixes. The
horizontal axis represents the 25 iterations, while the ver-
tical axis denotes the minimum to maximum range of the
heap size of each subject (with or without a fix). no Patch ,
represented with pink lines, denotes the heap size before the
fix, while the blue line is for heap size after applying the
patch by LEAKPAIR.

Although there was some fluctuation due to the nature
of web applications (e.g., it can be affected by the browser
status even for the same scenarios), it turns out that our
patches contribute to reducing memory consumption, or at
least, they do not add to it, nor do they introduce any new
leaks. Again, it is noticeable how the subjects with unknown
leaks (Figure 6) showed a significant heap reduction as
compared to the ones with known leaks (Figure 7).

The results of our experiments may imply that LEAK-
PAIR is effective for most SPAs, no matter how it is main-
tained. It might be helpful to reduce memory consumption,
and it can further prevent potential memory bloats. Fur-
thermore, it does not add any harmful code and does not
increase memory consumption in any way.

Answer to RQ1: LEAKPAIR can generate patches to fix mem-
ory leaks in SPAs without leak detection, and the patches suc-
cessfully reduce applications’ memory consumption. It turns
out that they are competitive with the original patches written
by human developers.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

TABLE 5: Memory consumption results before and after applying LEAKPAIR to the subjects in Table 3.

ID Leak Patterns Leaked Objects Leaked Objects Leak Object Heap Size Before Heap Size After Total Heap
Before applying LEAKPAIR After applying LEAKPAIR Reduction applying LEAKPAIR applying LEAKPAIR Size Reduction

K1 FP2 4.5 clusters 4 clusters 0.5 clusters 32 MB 32 MB 0 MB (0%)
K2 FP1 0 cluster 0 cluster 0 clusters 55.6 MB 55.5 MB 0.1 MB (0.2%)∗
K3 FP3 3 clusters 2.2 cluster 0.8 cluster 25.9 MB 24.9 MB 1 MB (0%)∗
K4 FP1 10 clusters 10 cluster 0 cluster 56.9 MB 44.6 MB 12.3 MB (21.6%)∗∗
K5 FP3 10.4 clusters 10 clusters 0.4 clusters 15.05 MB 15.05 MB 0 MB (0%)
K6 FP1 1 clusters 0.6 clusters 0.4 clusters 15.05 MB 15.05 MB 0.0 MB (0%)
K7 FP2 3 clusters 3 clusters 0 clusters 17.45 MB 17.45 MB 0 MB (0%)
K8 FP1 13 clusters 12.5 clusters 0.5 clusters 161.6 MB 161.3 MB 0.3 MB (0.2%)
K9 FP3 4.5 clusters 4.5 clusters 0 clusters 33.8 MB 33 MB 0.8 MB (2.4%)∗
K10 FP1 0.5 cluster 0.5 cluster 0 cluster 9.2 MB 9.2 MB 0.0 MB (0%)
K11 FP2, FP3 1 clusters 1 clusters 0 clusters 66.2 MB 66.1 MB 0.1 MB (0.2%)
K12 FP3 1 cluster 1 cluster 0 cluster 7.2 MB 7.1 MB 0.1 MB (1.4%)
K13 FP2 2.5 clusters 2.4 cluster 0.1 cluster 86.2 MB 86.2 MB 0 MB (0%)∗
K14 FP2 7 clusters 7 clusters 0 cluster 89 MB 88.9 MB 0.1 MB (0.1%)
K15 FP1 0 clusters 0 clusters 0 clusters 31.2 MB 31.2 MB 0 MB (0%)
K16 FP3 2.5 clusters 2.5 clusters 0 clusters 6 MB 5.8 MB 0.2 MB (3.3%)
K17 FP3 0 clusters 0 clusters clusters 7 MB 7 MB 0 MB (0%)
K18 FP3 1.3 clusters 1.1 clusters 0.2 clusters 34.5 MB 34.5 MB 0 MB (0%)
K19 FP1 3.5 clusters 2 clusters 1.5 clusters 20.3 MB 20.1 MB 0.2 MB (0.1%)∗∗
K20 FP5c 0 clusters 0 clusters 0 clusters 12.1 MB 12.1 MB 0 MB (0%)
K21 FP5a 10 clusters 10 clusters 0 clusters 269.2 MB 269.1 MB 0.1 MB (0.03%)
K22 FP3 4 clusters 3.5 clusters 0.5 clusters 57.7 MB 57.2 MB 0.5 MB (0.9%)
K23 FP2, FP3 1 clusters 1 clusters 0 clusters 113.8 MB 113.5 MB 0.3 MB (0.3%)∗
K24 FP3 0 clusters 0 clusters 0 clusters 9.2 MB 9.1 MB 0.1 MB (1.1%)
K25 FP2 13 clusters 12.9 clusters 0.1 clusters 209 MB 209.6 MB 0 MB (0%)
K26 FP3 1 clusters 1 clusters 1 clusters 52 MB 52 MB 0 MB (0%)
K27 FP2 26 clusters 25 clusters 1 clusters 150.8 MB 149.2 MB 1.6 MB (1.1%)
K28 FP2 1 clusters 0.8 clusters 0.2 clusters 40.5 MB 40.5 MB 0 MB (0%)
K29 FP2 0 clusters 0 clusters 0 clusters 8.3 MB 8.3 MB 0 MB (0%)
K30 FP2 10.5 clusters 10.5 clusters 0 clusters 18.1 MB 15.3 MB 2.8 MB (45.3%)

∗: p-value < 0.05, ∗∗: p-value < 0.01.

TABLE 6: Results of pull requests reporting the patches gen-
erated by LEAKPAIR, which fix unknown leaks in subjects
listed in Table 2.

Agreed Disagreed Ignored TotalMerged Approved Improved
14 2 0 0 16 32

5.2 RQ2: Are the patches by LEAKPAIR acceptable?

To assess the acceptability of patches generated by LEAK-
PAIR, a live study was carried out on active open-source
SPA projects (including SPA websites and libraries used by
them), as described in Section 4.2.3.

The study involves creating pull requests (PRs) for
patches by LEAKPAIR for the subjects in Table 2, and ob-
serving the outcome of pull requests. We submitted 32 pull
requests after clustering similar leaks/patches and confirm-
ing a substantial reduction in the count of memory leaks or
heap size by the patches, together with the analysis results
by Memlab [44].

Table 6 contains the results of the live study up to the
submission date. Merged refers to PRs that were directly
merged in the original form. Improved represents the cases
where the developer(s) do not merge the original PR, but
rather create a new PR to address the issues or make
improvements in their code themselves, based on our PR
submission. Sometimes the project authors acknowledge the
issues that were fixed by the PR but the merging of the
PR remains pending or undecided, the Approved section
covers these cases. Disagreed denotes the instances where
the developer rejects acknowledging the issue entirely, while
Ignored are PR that received no action (tag/comment/reac-

tion) by the project authors up till the date of submission.

Sixteen out of 32 PRs (50%) are approved by the devel-
opers, out of which 9 were merged directly. One PR led
to the creation of a separate PR by the project developers
based on the changes in our PR, which addressed the same
leak patterns but used a slightly different approach (in
compliance with their specific programming conventions),
which was then merged. The leak patterns repaired in 2 of
the PRs are approved as anti-patterns by the authors that
need to be addressed; however, the PRs for them have not
yet been merged. The authors have taken note of our repairs
and plan to address the leak patterns themselves soon.

One of our PRs inspired the project owner to fix a similar
memory leak pattern as the one in the PR. It is worth
noting that no PR has been rejected so far, which further
corroborates the non-intrusive nature of LEAKPAIR patches.
16 PRs did not get any response from the developers up to
the date of submission.

Answer to RQ2: The patches generated by LEAKPAIR are
even acceptable to the developers of the target projects. While
more than half of the patch suggestions are accepted, there are
no explicitly rejected patches.

5.3 RQ3: Do the patches break the functionality?

Fortunately, our approach of ensuring correctness benefits
from the modular structure of the single-page applications,
where each component is typically written in a separate
file (module). Even if a specific test case for a particular
component is not available, the shared nature of code among
modules means that a failure in one component is likely to
impact others, and at the very least, the root component.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

0 10 20
Loop Iteration Step

31.00

31.25

31.50

31.75

32.00
He

ap
 S

ize
 (M

B)

no patch
LeakPair

(a) U1

0 10 20
Loop Iteration Step

16

17

18

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(b) U2

0 10 20
Loop Iteration Step

20

25

30

35

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(c) U3

0 10 20
Loop Iteration Step

350

360

370

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(d) U4

0 10 20
Loop Iteration Step

20

25

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(e) U5

0 10 20
Loop Iteration Step

43.5

44.0

44.5

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(f) U6

0 10 20
Loop Iteration Step

200

220

240

260

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(g) U7

0 10 20
Loop Iteration Step

260

280

300

320

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(h) U8

0 10 20
Loop Iteration Step

25.5

26.0

26.5

27.0

27.5

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(i) U9

0 10 20
Loop Iteration Step

98

100

102

104

106

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(j) U10

0 10 20
Loop Iteration Step

59.75

60.00

60.25

60.50

60.75

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(k) U11

0 10 20
Loop Iteration Step

40

60

80

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(l) U12

0 10 20
Loop Iteration Step

54

56

58

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(m) U13

0 10 20
Loop Iteration Step

60

70

80

90

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(n) U14

0 10 20
Loop Iteration Step

65

66

67

68

69

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(o) U15

0 10 20
Loop Iteration Step

17

18

19

20

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(p) U16

0 10 20
Loop Iteration Step

13.0

13.2

13.4

13.6

13.8

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(q) U17

0 10 20
Loop Iteration Step

59

60

61

62

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(r) U18

0 10 20
Loop Iteration Step

150

175

200

225

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(s) U19

0 10 20
Loop Iteration Step

285

290

295

300

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(t) U20

0 10 20
Loop Iteration Step

40.0

42.5

45.0

47.5

50.0

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(u) U21

0 10 20
Loop Iteration Step

170

180

190

200

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(v) U22

0 10 20
Loop Iteration Step

15.5

16.0

16.5

17.0

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(w) U23

0 10 20
Loop Iteration Step

212

214

216

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(x) U24

0 10 20
Loop Iteration Step

12.75

13.00

13.25

13.50

13.75

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(y) U25

0 10 20
Loop Iteration Step

20

21

22

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(z) U26

0 10 20
Loop Iteration Step

63.0

63.5

64.0

64.5

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(aa) U27

0 10 20
Loop Iteration Step

24.300

24.325

24.350

24.375

24.400

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(ab) U28

0 10 20
Loop Iteration Step

160

180

200

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(ac) U29

0 10 20
Loop Iteration Step

300

350

400

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(ad) U30
Fig. 6: Heap size over loops after applying LEAKPAIR to the subjects listed in Tables 2.

When this happens, the application would most likely fail
to compile successfully or break at least some test cases.

To show the non-intrusiveness of the patches generated
by our tool, we built and compiled the application after
the patch application by LEAKPAIR. Then we ran the test
cases of each subject according to the procedure explained
in Section 4.2.4. We could not run test suites for two and four
subjects listed in Tables 2 and 3, respectively. Across the 40
projects containing test cases, we evaluated a total of 15,315
test cases, with an average of 382.88 test cases per project.
The number of test cases per project ranged from 1 to 4,272.

The tables report on the execution time of the test suites as
well.

As shown in Tables 7 and 8, the patches generated by
LEAKPAIR do not introduce any new positive or negative
test outcomes 99% of the time. For one subject (U28), we see
new failing test cases after LEAKPAIR fixes; this is because
one of the fix patterns (Event listener leak fix) used by
LEAKPAIR makes use of a web API (AbortController [109])
which is supported by all modern mainstream browsers;
however, the dynamic tests provided within the project
U28 were written using an obsolete browser that does not

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

0 10 20
Loop Iteration Step

31.8

32.0

32.2
He

ap
 S

ize
 (M

B)
no patch
LeakPair

(a) K1

0 10 20
Loop Iteration Step

56.0

56.5

57.0

57.5

58.0

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(b) K2

0 10 20
Loop Iteration Step

20.0

22.5

25.0

27.5

30.0

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(c) K3

0 10 20
Loop Iteration Step

45

50

55

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(d) K4

0 10 20
Loop Iteration Step

29.4

29.5

29.6

29.7

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(e) K5

0 10 20
Loop Iteration Step

15.00

15.05

15.10

15.15

15.20

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(f) K6

0 10 20
Loop Iteration Step

17.400

17.425

17.450

17.475

17.500
He

ap
 S

ize
 (M

B)
no patch
LeakPair

(g) K7

0 10 20
Loop Iteration Step

157.5

160.0

162.5

165.0

167.5

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(h) K8

0 10 20
Loop Iteration Step

32

34

36

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(i) K9

0 10 20
Loop Iteration Step

9.20

9.25

9.30

9.35

9.40

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(j) K10

0 10 20
Loop Iteration Step

66.0

66.2

66.4

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(k) K11

0 10 20
Loop Iteration Step

7.0

7.1

7.2

7.3

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(l) K12

0 10 20
Loop Iteration Step

80

85

90

95

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(m) K13

0 10 20
Loop Iteration Step

88.25

88.50

88.75

89.00

89.25

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(n) K14

0 10 20
Loop Iteration Step

31.5

32.0

32.5

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(o) K15

0 10 20
Loop Iteration Step

22.30

22.35

22.40

22.45

22.50

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(p) K16

0 10 20
Loop Iteration Step

7.000

7.025

7.050

7.075

7.100

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(q) K17

0 10 20
Loop Iteration Step

32

33

34

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(r) K18

0 10 20
Loop Iteration Step

16

17

18

19

20

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(s) K19

0 10 20
Loop Iteration Step

11.5

12.0

12.5

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(t) K20

0 10 20
Loop Iteration Step

260

270

280

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(u) K21

0 10 20
Loop Iteration Step

58.300

58.325

58.350

58.375

58.400

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(v) K22

0 10 20
Loop Iteration Step

112

114

116

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(w) K23

0 10 20
Loop Iteration Step

9.10

9.15

9.20

9.25

9.30

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(x) K24

0 10 20
Loop Iteration Step

125

150

175

200

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(y) K25

0 10 20
Loop Iteration Step

52.000

52.025

52.050

52.075

52.100

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(z) K26

0 10 20
Loop Iteration Step

150

152

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(aa) K27

0 10 20
Loop Iteration Step

40.0

40.2

40.4

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(ab) K28

0 10 20
Loop Iteration Step

8.0

8.2

8.4

8.6

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(ac) K29

0 10 20
Loop Iteration Step

16

18

20

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(ad) K30
Fig. 7: Heap size over loops after applying LEAKPAIR to the subjects listed in Tables 3.

support the API.
For subjects with some skipped and failed test cases in

the original version, we checked if any new positive or neg-
ative test cases had replaced the previous outcomes. Again,
we found no discrepancies (other than for U28), indicating
that our patches do not change the behaviors of the subjects,
at least with respect to the test suites provided. In addition,
no significant differences were noted with respect to test
execution times either, as can be seen from the columns
Elapsed time before applying LEAKPAIR and Elapsed time after
applying LEAKPAIR

The results of this experiment show that LEAKPAIR is
unlikely to break the functionality of SPAs when generating
patches to fix potential memory leaks. This implies that the
users of LEAKPAIR may apply the tool without having the
functionality changed. Although running test suites may
not guarantee the non-intrusiveness of patches, our tool is
highly likely to generate patches that preserve the behaviors
of the programs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

TABLE 7: Test execution applying LEAKPAIR to the subjects in Table 2.

ID Test results before Test results after Elapsed time before Elapsed time after
applying LEAKPAIR applying LEAKPAIR applying LEAKPAIR applying LEAKPAIR

U1 N/A N/A N/A N/A
U2 N/A N/A N/A N/A
U3 46 passed of 46 46 passed of 46 8.1 s 8.4 s
U4 126 passed of 129 126 passed of 129 0.3 s 0.3 s
U5 6 passed of 14 6 passed of 14 3.9 s 1.4 s
U6 101 passed of 101 101 passed of 101 55 s 56.6 s
U7 66 passed of 66 66 passed of 66 119.835 s 120.835 s
U8 1031 passed of 1038 1031 passed of 1038 41.6 s 43.7 s
U9 43 passed of 43 43 passed of 43 6.5 s 6.3 s
U10 12 passed of 12 12 passed of 12 0.3 s 0.3 s
U11 N/A N/A N/A N/A
U12 N/A N/A N/A N/A
U13 N/A N/A N/A N/A
U14 N/A N/A N/A N/A
U15 4272 passed of 4272 4272 passed of 4272 47.3 s 1 min 18.4 s
U16 788 passed of 788 788 passed of 788 38.8 s 39.8 s
U17 56 passed of 56 56 passed of 56 9 s 8.8 s
U18 120 passed of 120 120 passed of 120 42 s 43.3 s
U19 164 passed of 164 164 passed of 164 11.5 s 8.6 s
U20 239 passed, 14 failed of 253 239 passed, 14 failed of 253 46.4 s 41.6 s
U21 N/A N/A N/A N/A
U22 N/A N/A N/A N/A
U23 18 passed of 18 18 passed of 18 10.6 s 2.3 s
U24 1961 passed, 9 skipped of 1970 1961 passed, 9 skipped of 1970 28.5 s 27.7 s
U25 5 failed, 1 passed of 6 5 failed, 1 passed of 6 1.52 s 1.6 s
U26 N/A N/A N/A N/A
U27 N/A N/A N/A N/A
U28 444 passed, 1 failed of 445 371 passed, 74 failed of 445 1 min 26.7 s 1 min 28.1 s
U29 44 passed, 1 failed of 45 44 passed, 1 failed of 45 18.6 s 16.7 s
U30 80 passed of 80 total 80 passed of 80 total 29.8 s 11.8 s

Note: The test failures in U28 after repair are due to an obsolete browser. Refer to Section V.C for more details.

Answer to RQ3: According to the test results, the patches
by LEAKPAIR are not intrusive. Although test suites cannot
guarantee their correctness, the patches do not break any
functionality, at least from a maintenance perspective.

5.4 RQ4: How does LEAKPAIR compare with GPT-4?

Table 9 shows the results for RQ4. The first column shows
the project IDs and the second column shows the heap size
measured by MemLab when the original buggy project is
used. The third column shows the file IDs; each file mod-
ified in the developer-provided patch is assigned a unique
ID. The fourth column shows the patch granularity used
to modify the file using GPT-4, which can be one of the
following: function, class, or file. For each file, we retrieve
ten patches generated by GPT-4. The number of plausible
patches and valid patches are shown in the seventh and
eighth columns, respectively. Occasionally, the generated
patches fail to run the target SPA project and the “Run
Failure” columns show the number of such patches. Even if
the patches run successfully, they may not pass the test suite,
and the “Test Fail” column shows the number of patches
that fail to pass the test suite.

We also found that MemLab fails to run for 37 patches
as shown in the “MemLab Failure” column. The following
is the breakdown of the failures: 34 times due to the time
out error; the tested scenario cannot retrieve a UI (User
Interface) element within the time limit, and 3 times due
to the other errors caused by the mismatch between the
scenario file and the actual web page; for example, an error

occurs when the scenario file refers to a UI element that does
not exist on the web page.

We measure the heap size for the plausible patches.
The fifth column shows the mean value (shown before
‘/’) and standard deviation (shown after ‘/’) of the heap
size observed when the plausible patches are applied. If
MemLab fails to run on a patched project, we exclude that
problematic patch from the heap size measurement. In the
“Heap Size Reduction” column, we compare the second and
fifth columns; both the reduced heap size and reduction
ratio are shown. Note that a negative value represents an
increase in the heap size after applying the patch. Finally,
the last column shows the results of LEAKPAIR, which are
the same as those in Table 5. This column is to compare the
results of LEAKPAIR with those of GPT-4.

The performance of GPT-4 is not as good as that of
LEAKPAIR. When comparing the sixth and last columns,
LEAKPAIR reduces the heap size more than GPT-4 in 23
subjects out of 30 subjects. In the table, we highlight the
subjects where LEAKPAIR outperforms GPT-4 in terms of
heap size reduction. Recall that we consider a patch valid
if it passes the test suite and reduces the heap size. Out of
340 generated patches, approximately 19% of them (66) are
found valid. Out of 30 subjects, 14 have at least one valid
patch.

We inspect the qualitative aspect of the patches gen-
erated by GPT. For example, the patch generated from
GPT-4, shown in Figure 8a, is almost identical with the
developer-written patch shown in Figure 8c. However,
there is a subtle difference between the two patches: the
developer-written patch includes the capture option in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

TABLE 8: Test execution results applying LEAKPAIR to the subjects in Table 3.

ID Test results before Test results after Elapsed time before Elapsed time after
applying LEAKPAIR applying LEAKPAIR applying LEAKPAIR applying LEAKPAIR

K1 N/A N/A N/A N/A
K2 N/A N/A N/A N/A
K3 14 passed of 14 14 passed of 14 41.2 s 35 s
K4 N/A N/A N/A N/A
K5 1610 passed of 1610 1610 passed of 1610 4 s 4 s
K6 64 passed of 64 64 passed of 64 10.01 s 10.2 s
K7 1656 passed of 1750 1656 passed of 1750 1.5 s 1.6 s
K8 275 passed of 277 275 passed of 277 10.582 s 8.549 s
K9 N/A N/A N/A N/A
K10 101 passed of 101 101 passed of 101 3.685 s 3.885 s
K11 62 passed of 62 62 passed of 62 3.7 s 2.2 s
K12 N/A N/A N/A N/A
K13 7 passed of 7 7 passed of 7 2.2 s 2 s
K14 N/A N/A N/A N/A
K15 64 passed of 64 64 passed of 64 10.6 s 8.6 s
K16 373 passed, 11 failed of 384 373 passed, 11 failed of 384 19.4 s 21.1 s
K17 124 passed of 124 124 passed of 124 10.7 s 11.7 s
K18 244 passed of 244 244 passed of 244 30.1 s 30.9 s
K19 N/A N/A N/A N/A
K20 21 passed of 21 total 21 passed of 21 total 5 s 5.7 s
K21 181 passed, 67 skipped of 248 179 passed, 69 skipped of 248 21.4 min 22.6 min
K22 163 passing, 3 failing of 166 163 passing, 3 failing of 166 3 min 3 min
K23 132 passed of 132 132 passed of 132 0.2 s 0.2 s
K24 9 passed, 1 failed of 10 9 passed, 1 failed of 10 37.9 s 67.2 s
K25 192 passed of 192 192 passed of 192 10 s 9.2 s
K26 N/A N/A N/A N/A
K27 178 passed of 178 178 passed of 178 3.4 s 1.7 s
K28 1 passed of 1 1 passed of 1 2.8 s 4.5 s
K29 N/A N/A N/A N/A
K30 N/A N/A N/A N/A

+ this.$refs.objectViewWrapper.removeEventListener(’dragover’, this.onDragOver);
+ this.$refs.objectViewWrapper.removeEventListener(’drop’, this.editIfEditable);
+ this.$refs.objectViewWrapper.removeEventListener(’drop’, this.addObjectToParent);

(a) GPT-generated patch

+ this.$refs.objectViewWrapper.removeEventListener(’dragover’, this.onDragOver, { capture: true });
+ this.$refs.objectViewWrapper.removeEventListener(’drop’, this.editIfEditable, { capture: true });
+ this.$refs.objectViewWrapper.removeEventListener(’drop’, this.addObjectToParent);

(b) LEAKPAIR-generated patch

this.$refs.objectViewWrapper.addEventListener(’dragover’, this.onDragOver, { capture: true });
this.$refs.objectViewWrapper.addEventListener(’drop’, this.editIfEditable, { capture: true });
this.$refs.objectViewWrapper.addEventListener(’drop’, this.addObjectToParent);
...

+ this.$refs.objectViewWrapper.removeEventListener(’dragover’, this.onDragOver, { capture: true });
+ this.$refs.objectViewWrapper.removeEventListener(’drop’, this.editIfEditable, { capture: true });
+ this.$refs.objectViewWrapper.removeEventListener(’drop’, this.addObjectToParent);

(c) Developer-written patch

Fig. 8: Comparison of patches produced by GPT-4, LEAKPAIR, and the developer for the second file of K21.

the first two removeEventListener calls, whereas the GPT-
4-generated patch does not. The patch generated by GPT-
4 does not remove the event listeners correctly, potentially
leading to memory leaks. When removeEventListener is
called, it removes the listener whose event type (the first
argument), listener function (the second argument) and
options (the third argument) all match. The first three lines
of Figure 8c show how the event listeners are added using
the addEventListener method. Note that the capture option
is set to true in the first two addEventListener calls. Since
the first two removeEventListener calls in Figure 8a do not
match the added listeners, they fail to remove them. In our
experiments, GPT-4 produced the correct patch in only 3 out

of 10 trials, despite the fact that the three addEventListener

calls are included in the prompt. In contrast, LEAKPAIR suc-
cessfully generates the correct patch, as shown in Figure 8b,
using the FP2 fix pattern. Recall that the FP2 fix pattern
ensures that the arguments passed to removeEventListener

match those used in the corresponding addEventListener

calls.

As another example, consider Figure 9, which shows the
patch for the K24 subject. Memory leaks occur because the
Interval handles created in Line 5 of Figure 9a are not

cleared. The developer-written patch shown in Figure 9a
calls clearInterval in Line 3 to clear the interval handle
when the enclosing component is unmounted. LEAKPAIR

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

TABLE 9: Memory consumption results before and after applying GPT-4 to the subjects in Table 3. In the fifth column, we
show the heap sizes for N patched versions, where N is equal to the number of plausible patches (the 7th column) minus
the number of plausible patches that cause MemLab failures (the 10th column). We use the notation X / Y, where X and Y
represent the mean value and standard deviation, respectively. In the last column, we highlight the cases where LEAKPAIR
outperforms GPT-4 in terms of heap reduction.

Project Heap Size File Patch Heap Size Heap Size Plausible Valid Run MemLab Test Heap Size
ID (Original Version) ID Granularity (Patched Versions) Reduction Patches Patches Failure Failure Fails Reduction (LEAKPAIR)

K1 28.79 MB 1 Function 28.86 MB / 0.23 -0.07 MB (-0.2%) 10 1 0 0 0 0 MB (0%)
K2 58.53 MB 1 File 58.8 MB / 0.33 -0.27 MB (-0.5%) 6 1 4 0 0 0.2 MB (0.1%)
K3 The context window size is exceeded. 0.1 MB (1.4%)
K4 The context window size is exceeded. 0 MB (0%)
K5 11.2 MB 1 File - - 0 0 10 0 0 0.1 MB (0.1%)
K6 13.91 MB 1 File 14.03 MB / 0.18 -0.12 MB (-0.9%) 8 1 2 0 0 0 MB (0%)
K7 9.82 MB 1 Function 9.81 MB / 0.03 0.01 MB (0.1%) 10 9 0 0 0 0.1 MB (0.2%)

K8 64.95 MB 1 File 65.79 MB / 1.5 -0.84 MB (-1.3%) 8 2 2 0 0 0.3 MB (0.2%)2 File 63.45 MB / 2.82 1.5 MB (2.3%) 10 6 0 0 0
K9 31.11 MB 1 Function 31.4 MB / 0.45 -0.29 MB (-0.9%) 8 3 2 0 0 0 MB (0%)

K10 10 MB

1 File 10 MB / 0 0 MB (0%) 3 0 7 0 0

0.0 MB (0%)2 File 10 MB / 0 0 MB (0%) 10 0 0 0 0
3 File 10 MB / 0 0 MB (0%) 10 0 0 0 0
4 File 10 MB / 0 0 MB (0%) 10 0 0 0 0

K11 66.2 MB 1 File - - 10 0 0 10 0 1 MB (0%)2 Function 66.96 MB / 0.24 -0.76 MB (-1.1%) 10 0 0 1 0
K12 6.66 MB 1 Function 6.68 MB / 0.04 -0.02 MB (-0.3%) 10 2 0 1 0 12.3 MB (21.6%)
K13 98.21 MB 1 Function 98.21 MB / 0.03 0 MB (0%) 10 9 0 0 0 0 MB (0%)
K14 26.77 MB 1 Class 26.75 MB / 0.07 0.02 MB (0.1%) 2 1 8 0 0 0.0 MB (0%)

K15 33.71 MB

1 File 33.76 MB / 0.05 -0.05 MB (-0.1%) 9 3 1 1 0

0.8 MB (2.4 %)
2 File 34.2 MB / 0.28 -0.49 MB (-1.5%) 4 0 6 2 0
3 File - - 0 0 10 0 0
4 File - - 0 0 10 0 0
5 File 33.71 MB / 0.03 0 MB (0%) 9 8 1 0 0

K16 33.53 MB 1 Function 33.34 MB / 0.22 0.19 MB (0.6%) 9 5 0 4 1 0.1 MB (0.2%)
K17 The context window size is exceeded. 0 MB (0%)
K18 The context window size is exceeded. 0 MB (0%)
K19 20.48 MB 1 Class 20.32 MB / 0.06 0.16 MB (0.8%) 10 9 0 0 0 0.2 MB (3.3%)
K20 There is no atomic patch within the file granularity. 0 MB (0%)

K21 263.65 MB 1 Class The context window size is exceeded. 0.1 MB (0.03%)2 Class - - 0 0 0 5 10
K22 55.4 MB 1 Class 55.4 MB / 0 0 MB (0%) 10 0 0 0 0 0.5 MB (0.9%)

K23 51.8 MB 1 Class 52.18 MB / 0.04 -0.38 MB (-0.7%) 10 0 0 1 0 0.3 MB (0.3%)2 Class 52.2 MB / 0 -0.4 MB (-0.8%) 10 0 0 0 0
K24 9.2 MB 1 Function 9.6 MB / 0 -0.4 MB (-4.3%) 10 0 0 5 0 0 MB (0%)
K25 The context window size is exceeded. 0 MB (0%)
K26 20.42 MB 1 Class 20.4 MB / 0 0.02 MB (0.1%) 3 3 0 1 7 0 MB (0%)
K27 The context window size is exceeded. 1.6 MB (1.1%)
K28 33.7 MB 1 Class 33.7 MB / 0 0 MB (0%) 10 0 0 0 0 0 MB (0%)

K29 8.3 MB 1 Function 8.36 MB / 0.13 -0.06 MB (-0.7%) 10 0 0 0 0 0 MB (0%)2 Class 8.39 MB / 0.17 -0.09 MB (-1.1%) 10 0 0 0 0
K30 21.48 MB 1 File 20.8 MB / 0.57 0.68 MB (3.2%) 10 3 0 6 0 2.8 MB (45.3%)

Total 259 66 63 37 18

generates a patch using the fix pattern FP3b. As shown in
Figure 9b, the obtained patch is semantically the same as the
developer-written patch. In contrast, the GPT-4-generated
patch shown in Figure 9c adds a call to clearInterval in
a newly defined function destroy . However, this patch,
while similar to the developer-written one, does not actually
invoke the destroy function, thereby failing to clear the
Interval handle. As a result, the GPT-4-generated patch

adds an unused variable intervalHandle and an unused
function destroy , which results in additional memory con-
sumption without fixing the memory leak. GPT-4 often gen-
erates seemingly plausible yet incorrect patches, as shown
in the examples above.

Answer to RQ4: GPT-4 is not as effective as LEAKPAIR in
generating valid patches for memory leaks in SPAs. LEAKPAIR
outperforms GPT-4 in terms of heap size reduction for 23
subjects out of the 30 subjects we investigated.

6 DISCUSSION

6.1 Revisiting the Pull Requests

Looking at the response of the live study (PR submissions),
it is safe to imply that memory leak issues are deemed
critical by the developers; they will readily fix the leaks
given that the actual root cause is identified. Even with no
significant heap reduction, developers remain committed to
fixing the leak as long as the source is identified. This is be-
cause most developers understand that as their application
grows, so will the impact of the leak, even if it seems benign
at the current stage.

The temporal difference in the creation dates of the PRs
(Vue in 2024 vs. Angular and React in 2023) likely affects
their approval rates, Vue PRs, being newer, have faced
higher unapproval rates (80%) likely due to insufficient
review time.

The analysis of the unapproved PRs reveals that 60% of
them involve changes in more than five files. This suggests
a trend where PRs that modify numerous files could make

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

1 setup() {
2 ...
3 + onBeforeUnmount(() =>

clearInterval(intervalHandle));
4 ...
5 - setInterval(() => { nextSlide() }, slideSpeed)
6 + let intervalHandle = setInterval(() => {

nextSlide() }, slideSpeed)
7 ...
8 }

(a) Developer-written patch.
1 setup() {
2 ...
3 + const intervalID = ref();
4 + onBeforeUnmount(() =>

clearInterval(intervalID.value));
5 ...
6 - setInterval(() => { nextSlide() }, slideSpeed)
7 + intervalID.value = setInterval(() => {

nextSlide() }, slideSpeed)
8 ...
9 }

(b) LEAKPAIR-generated patch.
1 setup() {
2 ...
3 - setInterval(() => { nextSlide() }, slideSpeed)
4 + let intervalHandle = setInterval(() => {

nextSlide() }, slideSpeed)
5 ...
6 + const destroy = () => {

clearInterval(intervalHandle) }
7 ...
8 }

(c) GPT-generated patch.

Fig. 9: Comparison of patches produced by the developer,
LEAKPAIR, and GPT-4 for K24.

them more challenging to review, leading to a greater likeli-
hood of unapproval or prolonged review periods.

Another significant observation is that 40% of the un-
approved PRs come from projects with fewer than 10 con-
tributors. This statistic implies that larger projects, which
typically have more than 10 contributors, may benefit from
better-established review processes and more resources for
thorough evaluations.

It is important to note that all the unapproved PRs were
either ignored or closed due to inactivity. None of these PRs
were explicitly rejected based on the quality of the patches
themselves.

6.2 Intrusive Memory Leak Repair (The Case of Un-
cleared Collections)

During the leak-pattern mining process, we found the use
of module/file-scoped collections (sets, arrays) to be quite
prevalent in SPAs [110], [111], [112], [113], which happened
to be one of the common causes of memory leakage. How-
ever, in SPAs, when a variable is defined outside of a
function (within the file scope), it is unclear when it will
no longer be needed. This causes them to be ignored by
the garbage collector, and they remain in memory long after
they are no longer needed. This may not be an issue for
primitive data types such as strings or integers, but if these
variables hold large arrays, their accumulation over time
can easily lead to huge memory leaks.

In SPA frameworks, each ‘page’ or view is rendered
by a separate function or class component. When a SPA
executes, the views (components) are rendered according
to the user’s actions. If a component is written in a file
that contains module-scoped collection(s), then, even after
the component unmounts, the collections defined in the file
scope still remain in memory, unless they are also explicitly
cleaned up in the destructors of the invoked components.

The two potential approaches for cleaning up these
module-level collections are:

1) Clearing them in the destructors of all the components
defined in the file.

2) Moving the collection from the module (file) scope to
the component scope (in a class constructor or func-
tion’s local scope); this way they can be dropped by
garbage collection when the class instance is dropped
or the function control is returned.

The first approach is vulnerable to creating intrusive
patches; it may breaks test cases/functionality of the tar-
get SPA. The module-scoped variables are accessible to all
components in the module, which means there will only
ever be one instance of that variable. If there are multiple
instances of the component or multiple components in the
same file, they will all be sharing the value of that variable,
so if we clear the collection variable in the destructors of
the component, then the destruction of one component will
affect other instances of the component or other components
in the same file.

The second approach may lead to redundant memory
consumption. While moving collection from module scope
to component scope will ensure garbage collection upon
class instance destruction or return of function control, there
will be a lot of code duplication. As mentioned before,
a module (file) may contain more than one component;
moving the collection to a component means duplicating
it in every component defined in the file. Also, some SPA
frameworks, such as React, maintain a component state, and
the component is re-rendered every time the state changes,
which means these huge collections would be reinitialized
every time the component state updates, gobbling up a lot
of memory and slowing the app’s performance.

We believe some trade-off between memory leak pre-
vention and code bloating is inevitable if we consider the
second fix, since it still preserves functionality but may
impact execution times (performance). Hence, for our cur-
rent study, we did not incorporate this pattern, as the aim
of our approach is to automate simple, non-intrusive fixes
that neither impact behaviour nor the performance of the
application in any way.

6.3 Automating Pattern Extraction
In this work, we manually extracted fix patterns from
real patches to fix memory leaks in SPAs. Considering the
demonstrated effectiveness of our pattern-based approach,
one viable future direction is to automate the extraction of
fix patterns. For instance, common fix patterns could be
mined from a large number of patches that fix memory leaks
in SPAs; similar approaches was used for general program
repair tasks [14]. Alternatively, an LLM can be used to fix
memory leaks in SPAs and then extract fix patterns from the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

generated patches. However, the poor performance of GPT-
4 in our evaluation questions the feasibility of this approach.

6.4 Threats to Validity
Threats to external validity may lie in the target subjects
that this study uses as they are open-source projects; thus,
the results may not be representative of projects, such
as those using closed-source techniques. In addition, our
study focuses only on JavaScript subjects, while there are
other languages implementing SPAs. This threat might be
mitigated since our target SPA frameworks (i.e., React and
Angular) are popular and representative in the web devel-
opment community. Another related threat is that the fix
patterns we extracted may work well only for the subjects
we used in the evaluation. To mitigate the potential risk
of overfitting patterns, we separated the dataset used for
pattern extraction (see Section 3.2) from the dataset used to
evaluate the efficacy of the patterns (see Section 4.2).
Threats to internal validity may include the fix patterns
manually extracted by the authors. To address this threat,
each fix pattern is extrapolated from real patches for mem-
ory leaks in SPAs.
Threats to construct validity may relate to the test cases
used in the evaluation. To show the non-intrusiveness of the
patches generated by LEAKPAIR, our experiment runs test
cases given by each subject. Although test suites may not
prove the correctness of the behavior in the applications, it
might be enough to preserve major functionalities in the
applications from the maintenance perspective. Since we
used the regression test suites provided by the subjects, each
subject may have different levels of test coverage. While
adding more test cases would be desirable, we found it
challenging to add new tests systematically without having
domain-specific knowledge on the subjects. To mitigate this
threat, we also ran manual tests on the subjects to check for
any unexpected behavior but did not find any.

6.5 Current Limitations
The current implementation of LEAKPAIR applies fix pat-
terns for individual files and does not handle memory leaks
whose fix require changes across multiple files. For example,
if a fix requires changes in the current file and another
file that is imported by the current file, LEAKPAIR cannot
generate a patch. As another example, memory allocation
and deallocation may occur in different files, and LEAKPAIR
cannot generate a patch in this case.

In SPA frameworks, state management and component
lifecycles introduce additional complexity. In Angular-based
SPAs, for instance, dynamic component creation using
ViewContainerRef or NgComponentOutlet can lead to mem-

ory leaks if components are instantiated but not prop-
erly destroyed. Since LEAKPAIR currently analyzes files
individually, it does not track how components interact
dynamically or how services manage shared states across
modules. This means that memory leaks caused by cross-
module communication, dynamically loaded components,
or third-party library integrations are not yet addressed by
our implementation.

However, these are implementation limitations rather
than fundamental limitations of our approach. It is feasible

to extend LEAKPAIR by defining and applying cross-file fix
patterns, allowing it to detect and resolve memory leaks that
span multiple files.

7 RELATED WORK

In this section, we will briefly go over the research efforts
done in the area of automated memory leak detection in
JavaScript as well as the progression of the applications
of pattern-based automated program repair over the years,
what limitations they encounter and how our approach fares
in comparison with these techniques.

7.1 Memory Leak Detection in JavaScript
There have been a number of studies and proposed ap-
proaches presented for the diagnosis and automated detec-
tion of memory leaks in JavaScript, however, they all suffer
from certain limitations, which leaves the state-of-the-art
still being the manual analysis of heap snapshots captured at
different points in time. In this section, we will summarize
and discuss 5 such leak-detection techniques proposed in
the last 7 years, and their corresponding limitations.

Diagnostic information on DOM objects also helps iden-
tify the source of leaking objects. Jensen et al. presented
MemInsight [9] in 2015, which makes use of modern
browser elements to provide comprehensive diagnostic in-
formation regarding DOM elements. It leverages the Jalangi
framework to instrument the source code to produce traces
where the memory of objects causing the leaks is allocated
(call trees) and accessed (access paths). The call tree shows
the context of method calls that assign the leaking object,
while access paths define the series of objects that contain
the leaking object, keeping it from being swept by the
garbage collector. MemInsight makes use of a unique object
lifetimes analysis, including an advanced DOM modelling
mechanism, to gauge the time since the object has gone stale,
without leveraging JavaScript’s garbage collector.

This tool, however, fails to provide the exact locations of
the root cause of the leak in the source code; the developer
still has to go through the detailed information and reports
provided by MemInsight to identify the actual source of
the leak. Moreover, as we explained earlier, approaches
based on staleness are unreliable for memory leak detection,
as leaking objects could still have unwanted references,
preventing them from going stale.

Another work [11] was published in the following year
by M. Rudafshani and P. A. War, based on the same cri-
teria of leak detection; i.e. object staleness. The tool, called
LeakSpot makes use of a run-time heap model by modifying
the application code in a browser-agnostic way to record ob-
ject allocations, accesses, and references. To find the leaked
objects and problematic locations in the code, LeakSpot
groups objects based on their allocation sites (where in the
code objects are allocated) or reference sites (where in the
code a reference is created to the objects). LeakSpot refines
the allocation sites by making an allocation-site graph. It
then determines whether the group of objects are leaked
or not based on their corresponding collective-staleness
graphs.

To facilitate debugging and fixing the leaks, for every
leaked object, LeakSpot reports all the locations in the code

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

where the forgotten references were created. An empirical
study conducted by J. Vilk and E. D. Berger [12] revealed
that on real web applications, LeakSpot typically reports
over 50 different allocation and reference sites which de-
velopers then have to manually analyse in order to identify
the root cause of the leak.

A variant of leak detection strategy employs the growth-
based approach. This approach considers the growing usage
of heap memory as an indication of leaking memory. J.
Qian presented a lightweight approach [10] for memory
leak diagnosis in web applications using this criterion. The
proposed technique obtains a sequence of heap snapshots
by executing the program. These snapshots are parsed and
the object reference graphs embedded in these snapshots
are traversed and compared to locate objects that are newly
created.

The newly created objects are groups based on the Sim-
ilarity Object Count (SOC) heuristic, where each common
parent object in the similarity groups represents a candidate
leak root. The memory growth of the candidate leak roots
in the heap snapshot is analysed; if the occupied memory
consistently grows, then that candidate object is regarded
as suspicious, otherwise discarded from the results. The
candidate leak roots are ordered by their occupied memory.

There are 2 limitations to this approach; first, it is a
leak detection method that is entirely manual and extensive.
Second, the candidate causes of leaks are obtained by gaug-
ing the growth of objects across heap snapshots, however,
growth-based analysis is not always a valid criterion as
some growth is expected and desirable such as that in the
cache.

While taking a deviation from growth-based and
staleness-based approaches, Vilk and E. D. Berger attributed
sustained growth of heap between round trips to the same
location in the website, as a gauge for leaking memory.
They developed BLeak [12], an automated leak detection
tool whose algorithm is based on the notion that web app
users often return to the same visual state after performing
some actions. The rationale is that visiting the same visual
state should consume almost the same amount of memory,
therefore, if there is sustained growth in memory consump-
tion (growing objects) between the loops to the same state,
it is a valid indicator of memory leakage.

BLeak first uses heap differencing to locate locations in a
heap with sustained growth between each round trip, which
it identifies as leak roots. To directly identify the root causes
of growth, BLeak employs JavaScript rewriting to target leak
roots and collect stack traces when they grow. Finally, when
presenting the results to the developer, BLeak ranks leak
roots by return on investment using a novel metric called
LeakShare that prioritizes memory leaks that free the most
memory with the least effort.

However, since it relies on interaction with the website,
BLeak requires a scenario file written on the part of the
user, to be able to run the web app in a headless browser,
specifying the steps to complete the round trip. In addition,
it takes around 10 minutes to execute. These 2 factors in our
opinion are a major hindrance in the prevalent usage of this
tool.

The latest dynamic approach to leak detection (at the
time of writing), was introduced in late 2022, as Mem-

lab [44], by team Meta at Facebook. Memlab reports retainer
traces of memory leaks by running the web app in a head-
less browser. For that, it needs a scenario file written by
the user, just as in the case of BLeak. Similar to BLeak, the
scenario file must contain steps that complete a full round
trip of web interaction.

For each group of leaked objects, Memlab prints one
leak trace, called the retainer trace. The trace is an object
reference from the GC root to the leaked objects. However,
the trace, just like the heap snapshot, is interposed with
metadata such as V8 HiddenClasses and class prototypes.
The idea is that if the user follows the trace from the root
to the final leaked object, they should be able to identify the
unwanted reference that should be released (set to null) to
break the chain to the root, thereby fixing the leak.

All the aforementioned approaches are to detect memory
leaks in JavaScript applications. While these tools often
provide debugging information to help developers identify
the root cause of the leak, they do not provide automated
fixes. In contrast, our approach proactively repairs memory
leaks in SPAs without requiring explicit leak detection.

7.2 Pattern Based Program Repair

The idea of automated program repair based on recurring
patterns mined from real-world projects was first proposed
by Kim et al. [114] in 2013. The authors manually reviewed
60, 000 patches from real-world projects, curated the recur-
ring fix patterns and applied them as what was then termed
Patch-Based Automated Program Repair. The approach was
evaluated on 253 subjects by comparing the patterns gener-
ated by PAR with those of GenProg [115]. Patches generated
by PAR were shown to have a higher ratio of acceptance by
subjects’ developers.

However, in contrast to LEAKPAIR’s straightforward ap-
proach of direct application of non-intrusive patches, PAR
depends on first localizing the statements to modify by sta-
tistical fault localization and modifies only those statements
that are visited by failing test cases.

There also have been efforts to employ pattern-based
repairs to repair DOM-related bugs. Vejovis [41], introduced
in a study published in 2014, is one such tool. The study
analyzed 190 real-world bug reports to detect recurring fixes
to DOM-related faults. The 2 most common fix categories
were found to be parameter replacements and DOM ele-
ment validations, which were then automated in the said
tool. Vejovis was evaluated on 11 subjects, on a total of 22
real-world bugs. Vejovis was successfully able to repair 20
out of those 22 bugs, 65% of which were ranked top by the
tool as the correct fix.

While this approach is limited to 2 specific DOM-related
bugs, our approach is able to address the general issue of
memory leaks, and can be extended to any memory leak
pattern so long the fix pattern is non-intrusive.

Pattern-based repairs have been applied to target
performance-related bugs such as high resource consump-
tion. Caramel [35], introduced in 2015, leverages non-
intrusive fix patterns, that are simple, easy to understand,
and easily acceptable to developers to address redundant
computations of loops, which wastes computations and
memory. The fix was fairly straightforward: breaking out

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

of the loop as soon as the condition became true. Caramel
provides a source-level patch to the user for each bug.
The tool was evaluated on 11 and 4 popular Java C/C++
applications respectively. The tool was able to identify 150
unknown performance bugs across all subjects, and success-
fully generate fixes for 149 out of those. 77.3% of the bugs
were fixed by developers, at the time of the publication.
However, unlike LEAKPAIR, the fixes generated by Caramel
are documented in a bug report rather than directly applied
in the source code.

Miscellaneous bugs have also been addressed by lever-
aging common patterns. In 2018, Liu et al. [42] presented
an approach that extracted code samples from StackOver-
flow and then mined 13 fix patterns from them. The fix
templates were implemented in a tool called SOfix, which
was evaluated on the Defects4J benchmark. The tool was
able to repair 23 bugs, which, at the time of the study, was
the highest count of automatically repaired bugs among the
contemporary approaches.

The patterns in SOfix, however, are only derived from
StackOverflow posts. In contrast, our approach ensures
the validity of the patterns by mining them from merged
commits on GitHub. In addition, the bug patterns targeted
by SOfix are miscellaneous, while LEAKPAIR focuses on
improving the performance of the subject by mitigating
overall memory leaks in the application.

In the same year, Liu et al proved the effectiveness and
efficacy of pattern-based program repair in a study [15], by
developing TBar, a simple template-based APR tool that
applies recurrently used fix patterns on already localized,
miscellaneous bugs. The evaluation was done on the De-
fects4J benchmark, and the tool was successfully able to
repair 74 out of 101 localized bugs. This, at the time of
the study, was a record performance by a Java APR tool,
and the authors expect the tool to be regarded as a baseline
for further developments in the domain of pattern-based
program repair.

TBar, however, does not aim to improve a particular
functional or non-functional aspect of the application. Our
approach, in contrast, targets the performance aspect of
the application i.e. memory usage, and was shown to be
successful in improving the state of memory leakage of the
applications.

Efforts have also been made to automate the process
of mining patterns itself. In 2019, Koyuncu at al. proposed
FixMiner [14] a tool for automatically mining fix patterns,
leveraging a ’three-fold iterative clustering’ strategy, which
can then be utilized by automated patch generation tools.
Using the AST context of the code changes, it tries to cluster
the recurring changes based on their similarity. The tool and
its mined patches were evaluated on already-curated 1000
bugs. FixMiner was shown to curate accurate and effective
patches from open-source projects. Furthermore, an APR
prototype, PARFixMiner, was developed to implement the
patterns curated by FixMiner. PARFixMiner was success-
fully able to fix 26 Defects4J benchmark bugs, Moreover,
81% of FixMiner’s generated patches were proved to be
correct, showing a high probability of their correctness.

Though shown to curate accurate and effective patches,
it does not address the automated repair of bugs. LEAK-
PAIR on the other hand, does not have automated mining

capability but provides automated repair without requiring
prior bug localization. We believe these two tools to be
complementary to each other, if not directly comparable.

7.3 Pattern Based APR Requiring Fault Localization

Some pattern based repair tools rely on the localization of
the bugs to be able to generate the corresponding patch.
Jiang et al’s SimFix [116] is one such tool, that was in-
troduced in 2018. SimFix leverages both existing patches
and similar code to automatically repair programs. The
intersection of these 2 search spaces was then searched to
find the final fix patterns for the localized faults. SimFix was
evaluated on the Defects4J benchmark and was able to fix
34 bugs which, at the time of the study was the largest count
of bugs fixed by an APR tool on the benchmark, surpassing
SOFix. Furthermore, 13 of the fixes were fixed for the first
time by any APR tool.

Another APR tool assuming fault localization was pro-
posed in the following year by K. Liu et al, named as
AVATAR [50]. The tool leverages patches of static code
analysis violations to generate its own fixes since such
patches have already been systematically assessed by the
static detectors and can be relied on. AVATAR assumes an
accurate localization of fault, to be able to generate the
the corresponding patch. The tool was evaluated on the
Defects4J benchmark and was successfully able to repair 34
of 39 localized bugs. The performance was compared with
the contemporary approaches and was found to outperform
most of them while still being complementary to most.

Both of these approaches depend on an ordered list of
suspicious faulty statements using standard fault localiza-
tion approaches. Our approach, on the other hand, provides
a big edge over such approaches as it is able to repair bugs
without the prerequisite of localized faults.

7.4 Usability of Automated Patches

Tao et al. [117] evaluate the impact of auto-generated
patches on debugging effectiveness. In a large-scale human
study involving 95 participants, the study found that high-
quality patches significantly improved debugging correct-
ness. Participants appreciated the quick problem identifi-
cation provided by generated patches but doubted their
effectiveness for complex bugs. The findings emphasize
the impracticality of the direct deployment of automated
patches due to readability and maintainability concerns.
Instead, the authors argue that such auto-generated patches
can be useful in aiding debugging by suggesting potential
fixes. Our live study (patch submissions) results, on the
other hand, reveal that developers are much likely to accept
the patches if the fixes are simple, non-intrusive, and have a
noticeable impact (in this case, performance improvement).

R2Fix [118] is an automated tool designed to generate
patches for software written in C/C++ by analyzing free-
form bug reports. Its main goal is to reduce the time and
effort required for developers to fix bugs, particularly fo-
cusing on buffer overflows, null pointer bugs, and memory
leaks. The tool generates patch suggestions automatically,
producing an average of 1.33 patches per bug report, and
developers can verify and apply these patches directly.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

Overall, the tool proved its efficacy in shortening the bug-
fixing times by up to 63 days. Our tool, on the other hand,
focuses on improving the performance (memory utilization)
of web applications by proactively repairing memory leak-
ing patterns directly in the source code.

8 CONCLUSION

In this work, we have introduced a novel technique LEAK-
PAIR to fix memory leaks in single page web applications.
Despite the prevalence of single-page web applications and
their memory leaks, there has been no research effort to fix
those bugs automatically. We have shown that by using only
a handful of fix patterns mined from the existing patches,
diverse SPAs of 37 open-source projects can be successfully
fixed. Furthermore, the patches generated by LEAKPAIR are
high-quality (the majority of the pull requests LEAKPAIR
made were accepted by the original developers) and safe to
accept (the fix patterns we use are non-intrusive).

This work also aims at fixing a specific type of bug,
i.e., memory leaks in single-page applications. The proposed
technique is simple as compared to recent approaches. How-
ever, simplicity does not necessarily imply ineffectiveness.
On the contrary, LEAKPAIR is very effective, as was shown.
We view this as the strength of our approach. For certain
types of bugs, simple pattern-based approaches, like ours,
do a good job without using heavy-weight deep learning
or implementing complex static analysis and proving the
correctness of the analysis.

9 DATA AVAILABILITY

We make the replication package publicly available, which
includes all the code and datasets to reproduce our experi-
ments at https://github.com/Arooba-git/leakpair-study-r
eplication/ [51].

ACKNOWLEDGMENTS

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT) (No. RS-2021-NR060080 and 2021R1I1A3048013) and
the Institute for Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. RS-2024-00437306 and RS-2023-
00222830). In addition, this work was supported by ICT
Creative Consilience Program through the Institute of In-
formation & Communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government (MSIT)
(IITP-2025-RS-2020-II201819).

REFERENCES

[1] “roosterjs,” [Online; accessed 15. Feb. 2023]. [Online]. Available:
https://github.com/microsoft/roosterjs/commit/c3f2f0c4d229
502c634e6c99b604df3e5f47b9b6

[2] N. Lazarov, “Memory leaks and memory consumption
in web applications (part 1).” [Online]. Available: https:
//www.telerik.com/blogs/memory-leaks-and-memory-consu
mption-in-web-applications-part-1

[3] G. Fink, I. Flatow, and SELA Group, Pro Single Page Application
Development: Using Backbone.js and ASP.NET. New York, NY,
USA: Apress, May 2014.

[4] K. Lawson, “What are single page applications and why
do people like them so much?” [Online]. Available: https:
//www.bloomreach.com/en/blog/2018/what-is-a-single-pag
e-application?spz=article var

[5] “4 Types of Memory Leaks in JavaScript and How to Get Rid
Of Them,” [Online; accessed 15. Feb. 2023]. [Online]. Available:
https://auth0.com/blog/four-types-of-leaks-in-your-javascrip
t-code-and-how-to-get-rid-of-them

[6] “roosterjs,” [Online; accessed 15. Feb. 2023]. [Online]. Available:
https://github.com/microsoft/roosterjs

[7] “Window: hashchange event - web apis | mdn,” [Online; accessed
15. Feb. 2023]. [Online]. Available: https://developer.mozilla.or
g/en-US/docs/Web/API/Window/hashchange event

[8] V. Azhari, S. Bhamra, N. Ezzati-Jivan, and F. Tetreault, “Efficient
heap monitoring tool for memory leak detection and root-cause
analysis,” in 2021 IEEE International Conference on Big Data (Big
Data). Orlando, FL, USA: IEEE, 2021, pp. 3020–3030.

[9] S. H. Jensen, M. Sridharan, K. Sen, and S. Chandra, “Meminsight:
Platform-independent memory debugging for javascript,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015. New York, NY,
USA: Association for Computing Machinery, 2015, p. 345–356.
[Online]. Available: https://doi.org/10.1145/2786805.2786860

[10] J. Qian, L. Wang, and X. Zhou, “A lightweight approach to detect
memory leaks in javascript (s),” in International Conference on
Software Engineering and Knowledge Engineering. San Francisco,
California, USA: KSI Research Inc., 07 2018, pp. 582–640.

[11] M. Rudafshani and P. A. S. Ward, “Leakspot: Detection and
diagnosis of memory leaks in javascript applications,” Softw.
Pract. Exper., vol. 47, no. 1, p. 97–123, jan 2017. [Online].
Available: https://doi.org/10.1002/spe.2406

[12] J. Vilk and E. D. Berger, “Bleak: Automatically debugging
memory leaks in web applications,” Commun. ACM, vol. 63,
no. 11, p. 146–153, oct 2020. [Online]. Available: https:
//doi.org/10.1145/3422598

[13] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“SemFix: Program Repair via Semantic Analysis,” in Proceedings
of the 2013 International Conference on Software Engineering, ser.
ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 772–781.

[14] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein,
M. Monperrus, and Y. Le Traon, “Fixminer: Mining relevant fix
patterns for automated program repair,” Empirical Softw. Engg.,
vol. 25, no. 3, p. 1980–2024, may 2020. [Online]. Available:
https://doi.org/10.1007/s10664-019-09780-z

[15] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar:
Revisiting template-based automated program repair,” in ISSTA
2019: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2019.
New York, NY, USA: Association for Computing Machinery,
2019, p. 31–42. [Online]. Available: https://doi.org/10.1145/32
93882.3330577

[16] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 2013 35th International
Conference on Software Engineering (ICSE). San Francisco, CA,
USA: IEEE, 2013, pp. 802–811.

[17] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated
program repair,” Communications of the ACM, vol. 62, no. 12, pp.
56–65, Nov. 2019.

[18] A. Shahoor, A. Y. Khamit, J. Yi, and D. Kim, “Leakpair:
Proactive Repairing of Memory Leaks in Single Page
Web Applications,” in 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Sep.
2023, pp. 1175–1187, iSSN: 2643-1572. [Online]. Available:
https://ieeexplore.ieee.org/document/10298488

[19] “Angular,” Mar. 2024, [Online; accessed 13. Mar. 2024]. [Online].
Available: https://angular.io

[20] “React,” Mar. 2024, [Online; accessed 13. Mar. 2024]. [Online].
Available: https://react.dev

[21] “GPT-4,” https://openai.com/index/gpt-4/.
[22] C. S. Xia and L. Zhang, “Automated Program Repair via

Conversation: Fixing 162 out of 337 Bugs for $0.42 Each
using ChatGPT,” in Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis. Vienna
Austria: ACM, Sep. 2024, pp. 819–831. [Online]. Available:
https://dl.acm.org/doi/10.1145/3650212.3680323

[23] “Garbage Collection in Redux Applications,” Feb. 2024, [Online;
accessed 8. Apr. 2024]. [Online]. Available: https://developers.s
oundcloud.com/blog/garbage-collection-in-redux-applications

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

[24] “Redux - A JS library for predictable and maintainable global
state management | Redux,” Apr. 2024, [Online; accessed 8. Apr.
2024]. [Online]. Available: https://redux.js.org

[25] “Introducing fuite: a tool for finding memory leaks in web
apps,” [Online; accessed 15. Feb. 2023]. [Online]. Available:
https://nolanlawson.com/2021/12/17/introducing-fuite-a-too
l-for-finding-memory-leaks-in-web-apps

[26] “A tour of V8: Garbage Collection,” [Online; accessed 15. Feb.
2023]. [Online]. Available: https://jayconrod.com/posts/55/a-t
our-of-v8--garbage-collection

[27] “pomodore-discord-bot,” [Online; accessed 15. Feb. 2023].
[Online]. Available: https://github.com/MarcoPereira27/pomo
dore-discord-bot/issues/4

[28] “Strange nodejs memory leak,” [Online; accessed 15. Feb. 2023].
[Online]. Available: https://stackoverflow.com/questions/6366
1738/strange-nodejs-memory-leak

[29] “angular,” [Online; accessed 15. Feb. 2023]. [Online]. Available:
https://github.com/angular/angular/issues/27803

[30] “Solving Memory Leaks in Large React Application,” online;
accessed 15. Feb. 2023. [Online]. Available: https://stackoverflo
w.com/questions/63813604/solving-memory-leaks-in-large-rea
ct-application

[31] “angular,” [Online; accessed 15. Feb. 2023]. [Online]. Available:
https://github.com/angular/angular/issues/20007

[32] “BloatBusters - WebPerfDays,” Aug. 2023, [Online; accessed 31.
Aug. 2023]. [Online]. Available: https://docs.google.com/pres
entation/d/1wUVmf78gG-ra5aOxvTfYdiLkdGaR9OhXRnOlIcE
mu2s/edit#slide=id.g1d65bdf6 0 0

[33] C. Taub, “How we resolved a memory leak on our website,”
DEV Community, May 2021. [Online]. Available: https://dev.to
/fiit/how-we-resolved-a-memory-leak-on-our-website-1kf0

[34] Msedgeteam, “The heap snapshot file format - Microsoft Edge
Development,” Aug. 2023, [Online; accessed 31. Aug. 2023].
[Online]. Available: https://learn.microsoft.com/en-us/micros
oft-edge/devtools-guide-chromium/memory-problems/heap-s
napshot-schema

[35] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “Caramel: Detect-
ing and Fixing Performance Problems That Have Non-intrusive
Fixes,” in Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ser. ICSE ’15. Piscataway, NJ, USA: IEEE
Press, 2015, pp. 902–912.

[36] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automati-
cally finding patches using genetic programming,” in Proceedings
of the 31st International Conference on Software Engineering, ser.
ICSE ’09. IEEE Computer Society, 2009, pp. 364–374.

[37] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and
L. Zhang, “A syntax-guided edit decoder for neural program
repair,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. New York, NY, USA: Association for
Computing Machinery, Aug. 2021, pp. 341–353.

[38] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan,
“CoCoNuT: combining context-aware neural translation models
using ensemble for program repair,” in Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and
Analysis. Virtual Event USA: ACM, Jul. 2020, pp. 101–114.
[Online]. Available: https://dl.acm.org/doi/10.1145/3395363.3
397369

[39] R. van Tonder and C. L. Goues, “Static automated program
repair for heap properties,” in Proceedings of the 40th International
Conference on Software Engineering, 2018, pp. 151–162.

[40] S. Hong, J. Lee, J. Lee, and H. Oh, “SAVER: scalable, precise, and
safe memory-error repair,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 271–283.

[41] F. S. Ocariza, Jr., K. Pattabiraman, and A. Mesbah, “Vejovis:
Suggesting fixes for javascript faults,” in Proceedings of
the 36th International Conference on Software Engineering,
ser. ICSE 2014. New York, NY, USA: Association for
Computing Machinery, 2014, p. 837–847. [Online]. Available:
https://doi.org/10.1145/2568225.2568257

[42] X. Liu and H. Zhong, “Mining stackoverflow for program repair,”
in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). Campobasso, Italy: IEEE,
2018, pp. 118–129.

[43] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen,
“Shaping program repair space with existing patches and
similar code,” in ISSTA 2018: Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2018. New York, NY, USA: Association for
Computing Machinery, 2018, p. 298–309. [Online]. Available:
https://doi.org/10.1145/3213846.3213871

[44] G. C. Liang Gong, “MemLab: An open source framework for
finding JavaScript memory leaks,” Engineering at Meta, vol. , no. ,
Oct. 2022. [Online]. Available: https://engineering.fb.com/202
2/09/12/open-source/memlab

[45] “RxJS - Observable,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://rxjs.dev/guide/observable

[46] “RxJS - takeUntil,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://rxjs.dev/api/operators/takeUntil

[47] “Codecademy,” [Online; accessed 17. Feb. 2023]. [Online].
Available: https://www.codecademy.com/courses/react-101/l
essons/component-lifecycle-methods/exercises/componentwill
unmount

[48] Window.requestAnimationFrame() - Web APIs | MDN. [Online;
accessed 17. Feb. 2023]. [Online]. Available: https://develope
r.mozilla.org/en-US/docs/Web/API/window/requestAnimati
onFrame

[49] “Events API | Vue 3 Migration Guide,” Jan. 2024, [Online;
accessed 4. Jan. 2024]. [Online]. Available: https://v3-migration
.vuejs.org/breaking-changes/events-api.html

[50] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyande, “Avatar: Fixing
semantic bugs with fix patterns of static analysis violations,”
in 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). Los Alamitos, CA, USA:
IEEE Computer Society, feb 2019, pp. 1–12. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SANER.2019.866
7970

[51] “leakpair-study-replication,” Mar. 2024, [Online; accessed 13.
Mar. 2024]. [Online]. Available: https://github.com/Arooba-git
/leakpair-study-replication/tree/main

[52] “Babel · The compiler for next generation JavaScript,” [Online;
accessed 17. Feb. 2023]. [Online]. Available: https://babeljs.io

[53] “jscodeshift,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://github.com/facebook/jscodeshift

[54] “recast,” [Online; accessed 16. Feb. 2023]. [Online]. Available:
https://github.com/benjamn/recast

[55] “react-zoom-pan-pinch,” [Online; accessed 15. Feb. 2023].
[Online]. Available: https://github.com/prc5/react-zoom-pan
-pinch/pull/270/commits

[56] “angular-components,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://github.com/angular/components

[57] “evergreen,” [Online; accessed 16. Feb. 2023]. [Online]. Available:
https://github.com/segmentio/evergreen

[58] “ngx-datatable,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://github.com/swimlane/ngx-datatable

[59] “react-multi-carousel,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://github.com/YIZHUANG/react-multi-carou
sel

[60] “angular-ui,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://github.com/DetektivKollektiv/angular-ui

[61] “retail-ui,” [Online; accessed 16. Feb. 2023]. [Online]. Available:
https://github.com/skbkontur/retail-ui/tree/retail-ui%401.11
.1

[62] “ndb-core,” [Online; accessed 16. Feb. 2023]. [Online]. Available:
https://github.com/Aam-Digital/ndb-core

[63] “devtools,” [Online; accessed 16. Feb. 2023]. [Online]. Available:
https://github.com/replayio/devtools

[64] “ngx-bootstrap,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://github.com/valor-software/ngx-bootstrap

[65] “defichain-income,” Oct. 2023, [Online; accessed 1. Oct. 2023].
[Online]. Available: https://github.com/rogi-sh/defichain-inc
ome

[66] “collosal,” Oct. 2023, [Online; accessed 1. Oct. 2023]. [Online].
Available: https://github.com/iceboy1406/collosal

[67] “tbt-website,” Oct. 2023, [Online; accessed 1. Oct. 2023]. [Online].
Available: https://github.com/tbtMEC/tbt-website

[68] “mempool,” Sep. 2023, [Online; accessed 30. Sep. 2023]. [Online].
Available: https://github.com/mempool/mempool

[69] “dspace-angular,” Oct. 2023, [Online; accessed 1. Oct. 2023].
[Online]. Available: https://github.com/DSpace/dspace-angul
ar

[70] “primeng,” Oct. 2023, [Online; accessed 1. Oct. 2023]. [Online].
Available: https://github.com/primefaces/primeng

[71] “ngx-formly,” Oct. 2023, [Online; accessed 1. Oct. 2023]. [Online].
Available: https://github.com/ngx-formly/ngx-formly

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

[72] “studio,” Oct. 2023, [Online; accessed 1. Oct. 2023]. [Online].
Available: https://github.com/foxglove/studio

[73] “bootstrap-vue,” Jan. 2024, [Online; accessed 1. Jan. 2024].
[Online]. Available: https://github.com/bootstrap-vue/bootstr
ap-vue

[74] “chatwoot,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/chatwoot/chatwoot

[75] “think-vuele,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/chfree/think-vuele

[76] “vue-admin-better,” Jan. 2024, [Online; accessed 1. Jan. 2024].
[Online]. Available: https://github.com/chuzhixin/vue-admin
-better?tab=readme-ov-file

[77] “vue-grid-layout,” Jan. 2024, [Online; accessed 1. Jan. 2024].
[Online]. Available: https://github.com/jbaysolutions/vue-gri
d-layout

[78] “weaverbird,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/ToucanToco/weaverbird

[79] “auto-animate,” Jan. 2024, [Online; accessed 1. Jan. 2024].
[Online]. Available: https://github.com/formkit/auto-animate

[80] “vue-snap,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/bartdominiak/vue-snap

[81] “element,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/ElemeFE/element

[82] “lan-ui,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/lan-ui/lan-ui

[83] “iview,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/iview/iview

[84] “buefy,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/buefy/buefy

[85] “fundamental-ngx,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://github.com/SAP/fundamental-ngx

[86] “material-ui,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://github.com/mui/material-ui

[87] “material.angular.io,” [Online; accessed 16. Feb. 2023]. [Online].
Available: https://github.com/angular/material.angular.io

[88] “octant,” [Online; accessed 16. Feb. 2023]. [Online]. Available:
https://github.com/vmware-archive/octant

[89] “transloco,” [Online; accessed 16. Feb. 2023]. [Online]. Available:
https://github.com/ngneat/transloco/pull/65/files

[90] “Fix memory leaks by louptheron · Pull Request #953 ·
MTES-MCT/monitorfish,” Sep. 2023, [Online; accessed 30. Sep.
2023]. [Online]. Available: https://github.com/MTES-MCT/m
onitorfish/pull/953/commits/1dc01c0d82261bf05277366d954fa
5d912632091

[91] “react-customizable-progressbar,” Sep. 2023, [Online; accessed
30. Sep. 2023]. [Online]. Available: https://github.com/martyan
/react-customizable-progressbar

[92] “fixed useEffect memory leak error by yoon-bbox · Pull
Request #49 · BalloonBox-Inc/scrt-network-oracle-client,” Sep.
2023, [Online; accessed 30. Sep. 2023]. [Online]. Available:
https://github.com/BalloonBox-Inc/scrt-network-oracle-clien
t/pull/49/commits

[93] “website,” Oct. 2023, [Online; accessed 1. Oct. 2023]. [Online].
Available: https://github.com/momentum-mod/website

[94] “patternfly-react,” Oct. 2023, [Online; accessed 1. Oct. 2023].
[Online]. Available: https://github.com/patternfly/patternfly-r
eact

[95] “fix: input refocused after blur by ThanoozN · Pull Request #541
· s-yadav/react-number-format,” Oct. 2023, [Online; accessed 1.
Oct. 2023]. [Online]. Available: https://github.com/s-yadav/rea
ct-number-format/pull/541/files

[96] “Fix missing clear timeout by tjbo · Pull Request #731 ·
helpscout/hsds-react,” Oct. 2023, [Online; accessed 1. Oct. 2023].
[Online]. Available: https://github.com/helpscout/hsds-react
/pull/731/files

[97] “Fix bugs and styling by edreichua · Pull Request #233 ·
dartmouth-cs98/project-dartmap,” Oct. 2023, [Online; accessed
1. Oct. 2023]. [Online]. Available: https://github.com/dartmou
th-cs98/project-dartmap/pull/233/files

[98] “vue-tree,” Jan. 2024, [Online; accessed 13. Jan. 2024]. [Online].
Available: https://github.com/wsfe/vue-tree

[99] “openmct,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/nasa/openmct

[100] “clrfund,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/ethereum/clrfund

[101] “web-mapviewer,” Jan. 2024, [Online; accessed 1. Jan. 2024].
[Online]. Available: https://github.com/geoadmin/web-mapvi
ewer

[102] “InstaLog,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/GeekAbdou/InstaLog

[103] “n8n,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/n8n-io/n8n

[104] “ui,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/PrefectHQ/ui

[105] “pycontw-frontend,” Jan. 2024, [Online; accessed 1. Jan. 2024].
[Online]. Available: https://github.com/pycontw/pycontw-fro
ntend

[106] “2nfm,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/codysherman/2nfm

[107] “docs,” Jan. 2024, [Online; accessed 1. Jan. 2024]. [Online].
Available: https://github.com/vuejs/docs

[108] H. B. Mann, “On a Test of Whether one of Two Random Variables
is Stochastically Larger than the Other,” The Annals of Mathemati-
cal Statistics, vol. 18, no. 1, pp. 50–60, Mar. 1947.

[109] “AbortController - Web APIs | MDN,” Mar. 2024, [Online;
accessed 3. Mar. 2024]. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Web/API/AbortController#browser
compatibility

[110] “ng-clarity,” Feb. 2024, [Online; accessed 11. Feb. 2024]. [Online].
Available: https://github.com/vmware-clarity/ng-clarity

[111] “octant,” Sep. 2023, [Online; accessed 24. Sep. 2023]. [Online].
Available: https://github.com/vmware-archive/octant

[112] “patternfly-react,” Sep. 2023, [Online; accessed 24. Sep. 2023].
[Online]. Available: https://github.com/patternfly/patternfly-r
eact

[113] “retail-ui,” Sep. 2023, [Online; accessed 24. Sep. 2023]. [Online].
Available: https://github.com/skbkontur/retail-ui

[114] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 2013 35th International
Conference on Software Engineering (ICSE). San Francisco, CA,
USA: IEEE, 2013, pp. 802–811.

[115] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automati-
cally finding patches using genetic programming,” in Proceedings
of the 31st International Conference on Software Engineering, ser.
ICSE ’09. IEEE Computer Society, 2009, pp. 364–374.

[116] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen,
“Shaping program repair space with existing patches and
similar code,” in ISSTA 2018: Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2018. New York, NY, USA: Association for
Computing Machinery, 2018, p. 298–309. [Online]. Available:
https://doi.org/10.1145/3213846.3213871

[117] Y. Tao, J. Kim, S. Kim, and C. Xu, “Automatically generated
patches as debugging aids: a human study,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2014. New York, NY, USA:
Association for Computing Machinery, 2014, p. 64–74. [Online].
Available: https://doi.org/10.1145/2635868.2635873

[118] “Ieee xplore full-text pdf:,” https://ieeexplore.ieee.org/stam
p/stamp.jsp?tp=&arnumber=6569740&tag=1, (Accessed on
07/16/2024).

