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Abstract—Several static analysis tools, such as Splint or FindBugs, have been proposed to the software development community to help

detect security vulnerabilities or bad programming practices. However, the adoption of these tools is hindered by their high false positive

rates. If the false positive rate is too high, developers may get acclimated to violation reports from these tools, causing concrete and severe

bugs being overlooked. Fortunately, some violations are actually addressed and resolved by developers. We claim that those violations that

are recurrently fixed are likely to be true positives, and an automated approach can learn to repair similar unseen violations. However, there

is lack of a systematic way to investigate the distributions on existing violations and fixed ones in the wild, that can provide insights into

prioritizing violations for developers, and an effective way to mine code and fix patterns which can help developers easily understand the

reasons of leading violations and how to fix them. In this paper, we first collect and track a large number of fixed and unfixed violations across

revisions of software. The empirical analyses reveal that there are discrepancies in the distributions of violations that are detected and those

that are fixed, in terms of occurrences, spread and categories, which can provide insights into prioritizing violations. To automatically identify

patterns in violations and their fixes, we propose an approach that utilizes convolutional neural networks to learn features and clustering to

regroup similar instances. We then evaluate the usefulness of the identified fix patterns by applying them to unfixed violations. The results

show that developers will accept and merge a majority (69/116) of fixes generated from the inferred fix patterns. It is also noteworthy that

the yielded patterns are applicable to four real bugs in the Defects4J major benchmark for software testing and automated repair.

Index Terms—Fix pattern, pattern mining, program repair, findbugs violation, unsupervised learning

Ç

1 INTRODUCTION

MODERN software projects widely use static code analy-
sis tools to assess software quality and identify poten-

tial defects. Several commercial [1], [2], [3] and open-source
[4], [5], [6], [7] tools are integrated into many software proj-
ects, including operating system development projects [8].
For example, Java-based projects often adopt FindBugs [4]
or PMD [5] while C projects use Splint [6], cppcheck [7],
or Clang Static Analyzer [9], while Linux driver code
are systematically assessed with a battery of static analyzers
such as Sparse and the LDV toolkit. Developers may benefit
from the tools before running a program in real environ-
ments even though those tools do not guarantee that all
identified defects are real bugs [10].

Static analysis can detect several types of defects such as
security vulnerabilities, performance issues, and bad

programming practices (so-called code smells) [11]. Recent
studies denote those defects as static analysis violations [12] or
alerts [13]. In the remainder of this paper, we simply refer to
them as violations. Fig. 1 shows a violation instance, detected
by FindBugs, which is a violation tagged BC_EQUALS_

METHOD_SHOULD_WORK_FOR_ALL_OBJECTS, as it does not
comply with the programming rule that the implementation
of method equals(Object obj) should not make any
assumption about the type of its obj argument [14].

As later addressed by developers via a patch represented
in Fig. 2, the method should return false if obj is not of the
same type as the object being compared. In this case, when
the type of obj argument is not the type ofModuleWrapper,
ajava.lang.ClassCastException should be thrown.

Despite wide adoption and popularity of static analysis
tools (e.g., FindBugs has more than 270K downloads1),
accepting the results of the tools is not yet guaranteed. Vio-
lations identified by static analysis tools are often ignored
by developers [15], since static analysis tools may yield high
rates of false positives. Actually, a (false positive) violation
might be (1) not a serious enough concern to fix, (2) less
likely to occur in a runtime environment, or (3) just incor-
rectly identified due to the limitations of the tool. Depend-
ing on the context, developers may simply give up on the
use of static analysis tools or they may try to prioritize viola-
tions based on their own criteria.

Nevertheless, we can regard a violation as true positive if it
is recurrently removed by developers through source code
changes as in the example of Fig. 2. Otherwise, a violation can
be considered as ignored (i.e., not removed during revisions)
or disappearing (a file or program entity is removed from a
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project) instead of being fixed. We investigate in this study
different research questions regarding (RQ1) to what extent do
violations recur in projects? (RQ2) what types of violations are
actually fixed by developers?(i.e., true positives) (RQ3) what are
the patterns of violations code that are fixed or unfixed by develop-
ers? From this question, we can identify common code pat-
terns of violations that could help better understand static
analysis rules. (RQ4) how are the violations resolved when devel-
opers make changes? Based on this question, for each violation
type, we can derive fix patterns that may help summarize
common violation (or real bug) resolutions and may be
applied to fixing similar unfixed violations. (RQ5) can fix
patterns help systematize the resolution of similar violations? This
question may shed some light on the effectiveness of common
fix patterns when applying them to potential defects.

To answer the above questions, we investigate violations
and violation fixing changes collected from 730 open source
Java projects. Although the approach is generic to any static
bug detection tool, we focus on a single tool, namely Find-

Bugs, applying it to every revision of each project. We thus
identify violations in each revision and further enumerate cases
where a pair of consecutive revisions involve the resolution of a
violation through source code change (i.e., the violation is
found in revision r1 and is absent from r2 after a code change
can be mapped to the violation location): we refer to such
recorded changes as violation fixing changes. We further conduct
empirical analyses on identified violations and fixed violations
to investigate their recurrences, their code patterns, etc.

After collecting violation fixing changes from a large
number of projects using an AST differencing tool [16],
we mine developer fix patterns for static analysis violations.
The approach encodes a fixing change into a vector space
using Word2Vec [17], extracts discriminating features using
Convolutional Neural Networks (CNNs) [18] and regroups
similar changes into a cluster using X-means clustering algo-
rithm [19]. We then evaluate the suitability of the mined fix
patterns by applying them to 1) a subset of unfixed violations
in our subjects, to 2) a subset of faults in Defects4J [20] and to
3) a subset of violations in 10 open source Java projects.

Overall, this paper makes the following contributions:

1) Large-scale dataset of static analysis violations: we have
carefully and systematically tracked static analysis vio-
lations across all revisions of a large set of projects.
This dataset, which has required substantial effort to
build, is available to the community in a labelled for-
mat, including the violation fixing change information.

We release a dataset of 16,918,530 unique samples
of FindBugs violations across revisions of 730
Java projects, along with 88,927 code changes
addressing some of these violations.

2) Empirical study on real-world management of FindBugs’
violations: our study explores the nature of violations
that are widespread across projects and contrasts the
recurrence of developer (non)fixes for specific catego-
ries, providing insights for prioritization research to
limit deterrence due to overwhelming false positives,
thus contributing towards improving tool adoption.

Our analyses reveal cases of violations that
appear to be systematically ignored by develop-
ers, and violation categories that are recurrently
addressed. The pattern mining of violation code
further provides insights into how violations can
be prioritized towards enabling static bug detec-
tion tools to be more adopted.

3) Violation fix pattern mining: we propose an approach
to infer common fix patterns of violations leveraging
CNNs and X-means clustering algorithm. Such pat-
terns can be leveraged in subsequent research direc-
tions such as automated refactoring tools (for
complying with project rules as done by check-
patch3,4 in the Linux kernel development), or auto-
mated program repair (by providing fix ingredients
to existing tools such as PAR [21]).

Mined fix patterns can be leveraged to help devel-
opers rapidly and systematically address high-
priority cases of static violations. In our experi-
ments, we showed that 40 percent of a sample set
of 500 unfixed violations could be immediately
addressedwith the inferred fix patterns.

4) Pattern-based violation patching: we apply the fix pat-
terns to unfixed violations and actual bugs in real-
world programs. Our experiments demonstrate the
potential of the approach to infer patterns that are
effective which shows the potential of automated
patch generation based on the fix patterns.

Developers are ready to accept fixes generated
based on mined fix patterns. Indeed out of 113 gen-
erated patches, 69 were merged in 10 open source
projects. It is noteworthy that since static analysis
can uncover important bugs, mined patterns can be
leveraged for automated repair. Out of the 14 real-
bugs in the Defects4J benchmark which can be
detected with FindBugs, our mined fix patterns
are immediately applicable to produce correct fixes
for 4 bugs.

Fig. 1. Example of a detected violation, taken from PopulateRepository-
Mojo.java file at revision bdf3fe in project nbm-maven-plugin.2 Fig. 2. Example of fixing violation, taken from Commit 0fd11c of project

nbm-maven-plugin.

2. https://github.com/mojohaus/nbm-maven-plugin

3. http://tuxdiary.com/2015/03/22/check-kernel-code-checkpatch
4. https://github.com/spotify/linux/blob/master/scripts/

checkpatch.pl
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The remainder of this paper is organized as follows. We
propose our studymethod in Section 2, describing the process
of violation tracking, and the approach for mining code pat-
terns based on CNNs. Section 3 presents the study results in
response to the research questions. Limitations of our study
are outlined in Section 4. Section 5 surveys related work. We
conclude the paper in Section 6 with discussions of future
work. Several intermediary results, notably w.r.t. the statistics
of violations are most detailed in the appendix, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSE.2018.2884955

2 METHODOLOGY

Our study aims at uncovering common code patterns
related to static analysis violations and to developers’ fixes.
As shown in Fig. 3, our study method unfolds in four steps:
(1) applying a static analysis tool to collecting violations
from programs, (2) tracking violations across the history of
program revisions, (3) identifying fixed and unfixed viola-
tions, (4) mining common code patterns in each class of vio-
lations, and (5) mining common fix patterns in each class of
fixed violations. We describe in details these steps as well as
the techniques employed.

2.1 Collecting Violations
To collect violations from a program, we apply a static anal-
ysis tool to every revision of the associated project’s source
code. Given the resource-intensive nature of this process,
we focus in this study on the FindBugs [22] tool, although
our method is applicable to other static analysis tools such
as Facebook Infer,5 Google ErrorProne,6 etc. We use the
most sensitive option to detect all types of violations
defined in FindBugs violation descriptions [14]. For each
individual violation instance, we record, as a six-tuple
value, all information on the violation type, the enclosing
program entity (e.g., project, class or method), the commit
id, the file path, and the location (i.e., start and end line
numbers) where the violation is detected. Fig. 4 shows an
example of a violation record in the collected dataset.

Since FindBugs requires Java bytecode rather than
source code, and given that violations must be tracked
across all revisions in a project, it is necessary to automate
the compilation process. In this study, we accept projects
that support the Apache Maven [23] build automation man-
agement tool. We apply maven build command (i.e., ‘mvn
package install’) to compiling each revision in 2014 projects
that we have collected. Eventually, we were able to success-
fully build 730 automatically.

2.2 Tracking Violations

Violation tracking consists in identifying identical violation
instances between consecutive revisions: after applying a
static analysis tool to a specific revision of a project, one can
obtain a set of violations. In the next version, another set of
violations can be produced by the tool. If there is any
change in the next revision, new violations can be intro-
duced and existing ones may disappear. In many cases
however, code changes can move violation positions, mak-
ing this process a non-trivial task.

Static analysis tools often report violations with line
numbers in source code files. Even when a commit modifies
other lines in different source file than the location of a vio-
lation, it might be unable to use line numbers for matching
identical violation pairs between two consecutive revisions.
Yet, if the tracking is not precise, the identification of fixed
violations may suffer from many false positives and nega-
tives (i.e., identifying unfixed ones as fixed ones or vice
versa). Thus, to match potential identical violations between
revisions, our study follows the method proposed by
Avgustinov et al. [24]. This method has three different viola-
tion matching heuristics when a file containing violations is
changed. The first heuristic is (1) location-based matching: if a
(potential) matching pair of violations is in code change
diffs,8 it compares the offset of the corresponding violations
in the code change diffs. If the difference of the offset is
equal to or lower than 3, we regard the matching pair as an
identical violation. When a matching pair is located in two
different code snapshots, we use (2) snippet-based matching:
if two text strings of the code snapshots (corresponding to
the same type of violations in two revisions) are identical,
we can match those violations. When the two previous heu-
ristics are not successful, our study applies (3) hash-based
matching, which is useful when a file containing a violation
is moved or renamed. This matching heuristic first com-
putes the hash value of adjacent tokens of a violation. It
then compares the hash values between two revisions. We
refer the reader to more details on the heuristics in [24].

There have been several other techniques developed to
do this task. For example, Spacco et al. [25] proposed a
fuzzy matcher. It can match violations in different source
locations between revisions even when a source code file
has been moved by package renaming. Other studies [26],
[27] also provide violation matching heuristics based on

Fig. 3. Overview of our study method.

Fig. 4. Example record of a single-line violation of type NP_NULL_

ON_SOME_PATH found in ReportAnalysisPanel.java file within Commit
b0ed41 in GWASpi

7 project.

5. http://fbinfer.com/
6. https://errorprone.info/

7. https://github.com/GWASpi/GWASpi
8. A “code change diff” consists of two code snapshots. One snap-

shot represents the code fragment that will be affected by a code
change, and another one represents the code fragment after it has been
affected by the code change.
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software change histories. However, these are not precise
enough to be automatically applied to a large number of
violations in a long history of revisions [24].

2.3 Identifying Fixed Violations

Once violation tracking is completed, we can figure out the
resolution of an individual violation. Violation resolution
can result in three different outcomes. (1) A violation can
disappear due to deleting a file or a method enclosing the
violation. (2) A violation exists at the latest revision after
tracking (even some code is changed), which indicates that
the violation has not been fixed so far. (3) A violation can be
resolved by changing specific lines (including code line
deletion) of source code. The literature refer to the first and
second outcomes as unactionable violations [26], [27], [28] or
false positives [25], [29], [30] while the third one is called
actionable violations or true positives. In this study we inspect
violation tracking results, focusing on the second outcome
(which yields the set of unfixed violations) and the third out-
come (which yield the set of fixed violations).

Starting from the earliest revisionwhere a violation is seen,
we follow subsequent revisions until a later revision has no
matching violation (i.e., the violation is resolved by removal
of the file/method or the code has been changed). If the viola-
tion location in the source code is in a diff pair, we classify it
as a fixed violation. Otherwise, it is an unfixed violation.

2.4 Mining Common Code Patterns

Our goal in this step is to understand how a violation is
induced. To achieve this goal, wemine code fragments where
violations are localized and identify common patterns, not
only in fixed violations but also in unfixed violations. Before
describing our approach of mining common code patterns,
we formalize the definition of a code pattern, and provide jus-
tifications for the techniques selected in the approach (namely
CNNs [18], [31], [32] andX-means clustering algorithm [19]).

2.4.1 Preliminaries

Definition of Code Patterns: In this study, a code pattern refers
to a generic representation of similar source code fragments.
Its definition is related to the definition of a source code entity
and of a code context.

Definition 1 Source Code Entity (Sce).A source code entity
(hereafter entity) is a pair of type and identifier, which denotes a
node in an Abstract Syntax Tree (AST) representation, i.e.,

Sce ¼ ðType; IdentifierÞ; (1)

where Type is an AST node type and Identifier is a textual
representation (i.e., raw token) of an AST node, respectively.

Definition 2 Code Context (Ctx). A code context is a three-
element tuple, which is extracted from a fined-grained AST sub-
tree (see Section 2.4.2) associated to a code block, i.e.,

Ctx ¼ ðSce; Scep; cctxÞ; (2)

where Sce is an entity and Scep is the parent entity of Sce
(with Scep ¼ ; when Sce is a root entity). cctx is a list of code
contexts that are the children of Ctx. When Sce is a leaf node
entity, cctx ¼ ;.

Definition 3 Code Pattern (CP). A code pattern is a three-
value tuple as following:

CP ¼ ðScea; Scec; cctxÞ; (3)

where Scea is a set of abstract entities of which identifiers are
abstracted from concrete representations of specific identifiers
that will not affect the common semantic characteristics of the
code pattern. Scec is a set of concrete entities, of which identi-
fiers are concrete, that can represent the common semantic
characteristics of the code pattern. Abstract entities represent
that the entities of a code pattern can be specified in actual
instances while concrete entities indicate characteristics of a
code pattern and cannot be abstracted. Otherwise, the code
pattern will be changed. cctx is a set of code contexts (See
Definition 2) that are used to explain the relationships among
all entities in this code pattern.

Fig. 5 shows an example of a code pattern extracted from
the source code. Scea contains an array type entity (Array-
Type, T[]), a variable name entity (Variable, var), and a
number literal entity (NumberLiteral, #), where T[] is
abstracted from the identifier String[] of (ArrayType,
String[]), var is abstracted from the identifier list in
(Variable, list), and identifier # is abstracted from the
number literal 0. The three identifiers of the three entities
can also be abstracted from other related similar entities,
which will not change the attributes of this pattern. Scec
consists of a (ReturnStatement, return) entity and
a method invocation entity (Method, toArray). The
identifiers of the two entities cannot be abstracted, other-
wise, the attributes of this pattern will be changed. If
extracting code pattern from the code at the level of violated
source code expression (i.e., the code pattern is (T[])

var.toArray(new T[#])), the (ReturnStatement,
return) node entity can be abstracted as a null entity
because this node entity will not affect this code pattern.

cctx contains a code context that explains the relation-
ships among these entities, of which code block is a
ReturnStatement. c1 is the code context of the root
source code entity ReturnStatement and consists of three

Fig. 5. Example representation of a code pattern.
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values. The first one is the current Sce that contains a Type
and an Identifier. The second one is the Scep of the current
Sce which is null as Sce is a root entity. The last one is a list
of code contexts which are c1’s children. It is the same as
others. c2 is the direct child of c1. c3 and c4 are the direct chil-
dren of c2. The source code entity of c3 is a leaf node entity,
as a result, its child set is null. It is the same for others.

Suitability of Convolutional Neural Networks: Grouping code
requires the use of discriminating code features to compute
reliable metrics of similarity. While the majority of feature
extraction strategies perform well on fixed-length samples, it
should be noted that code fragments often consist of multiple
code entities with variable lengths. A single code entity such
as a method call may embody some local features in a given
code fragment, while several such featuresmust be combined
to reflect the overall features of the whole code fragment. It is
thus necessary to adopt a technique which can enable the
extraction of both local features and the synthesis of global
features thatwill best characterize code fragments so that sim-
ilar code fragments can be regrouped together by a classical
clustering algorithm. Note that the objective is not to train a
classifier whose output will be some classification label given
a code fragment or the code change of a patch. Instead, we
adopt the idea of unsupervised learning [33] and lazy learn-
ing [34] to extract discriminating features of code fragments
and patch code changes.

Recently, a number of studies [18], [32], [35], [36], [37], [38],
[39] have provided empirical evidence to support the natural-
ness of software [40], [41]. A recent work by Bui et al. [42] has
provided preliminary results showing that some variants of
Convolutional Neural Networks are even effective to capture
code semantics so as to allow the accurate classification of
code implementations across programming languages.

Inspired by the naturalness hypothesis, we treat source
code of violations as documents written in natural language
and to which we apply CNNs to addressing the objective of
feature learning. CNNs are biologically-inspired variants of
multi-layer artificial neural networks [31]. We leveraged the
LeNet5 [43] model, which involves lower- and upper-layers.
Lower-layers are composed of alternating convolutional
and subsampling layers which are local-connected to capture
the local features of input data, while upper-layers are fully-
connected and correspond to traditional multi-layer percep-
trons (a hidden layer and a logistic regression classifier),
which can synthesize all local features captured by previous
lower-layers.

Choice of X-means Clustering Algorithm: While K-Means is
a classical algorithm that is widely used, it poses the chal-
lenge of a try-and-err protocol for specifying the number K
of clusters. Given that we lack prior knowledge on the

approximate number of clusters which can be inferred, we
rely on X-Means [19], an extended version of K-Means,
which effectively and automatically estimate the value of K
based on Bayesian Information Criterion.

2.4.2 Refining the Abstract Syntax Tree

In our study, code patterns are inferred based on the tokens
that are extracted from the AST of code fragments, i.e., the
node types and identifiers. Preliminary observations reveal
that some tokens generically tagged SimpleName in leaf
nodes can interfere feature learning of code fragments. For
example, in Fig. 7, the variable node list is presented as
(SimpleName, list), and the method node toArray is
also presented as (SimpleName, toArray) at the leaf node
in the generic AST tree. As a result, it may be challenging to
distinguish the two nodes from each other. Hence, a method
of refining the generic AST tree is necessary to reduce such
confusions.

Algorithm 1 illustrates the algorithm of refining a generic
AST tree. The refined AST tree keeps the basic construct of
the generic AST tree. If the label of a current node can be

Fig. 6. Overview of our code patterns mining method.

Fig. 7. Generic and Refined AST of an example code fragment.
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specified as a SimpleName leaf node in generic AST tree,
the node will be simplified as a single-node construct by
combining its discriminating grammar type and its label
(i.e., identifier), and its label-related children will be remo-
ved in the refined AST tree.

Algorithm 1. Refining a Generic AST Tree

Input: A generic AST tree T .
Output: A refined AST tree Trf .
1 Function refineAST(T)
2 r T:currentNode;
3 Trf :currentNode r;
4 if r’s label can be a SimpleName node then
5 // r’s label can be specified as a SimpleName leaf

node;
6 Remove SimpleName-related children from r;
7 Update r to (r.Type, r.Label.identifier) in Trf ;
8 foreach child 2 r.children do
9 childrenrf .add( refineAST ðchildÞ );
10 Trf :currentNode:children childrenrf ;
11 return Trf ;

Fig. 7 shows themodels respectively of the genericAST tree
and of the refined AST tree of a code fragment containing a
return statement. First, the refined tree presents a simplified
architecture. Second, it becomes easier to distinguish some
different nodes with the refined AST tree than the generic
AST tree nodes. The node of array type String[] is simpli-
fied as (ArrayType, String[]), the variable (SimpleName,
list) is simplified as (Variable, a), and the method invo-
cation of toArray is simplified as (Method, toArray).
Although themethodnodetoArray can be identified by vis-
iting its parent node (i.e., MethodInvocation), it requires
more steps to obtain this information. In the refined AST tree,
the two nodes are presented as (Variable, list) and
(Method, toArray) respectively. Consequently, it becomes
easier to distinguish the two nodes with the refined AST tree
than the generic AST tree nodes.

To understand which implementations induce static
analysis violations, we design an approach for mining com-
mon code patterns of detected violations. The patterns are
expected to summarize the main ingredients of code violat-
ing a given static analysis rules. This approach involves two
phases: data preprocessing and violation patterns mining,
as illustrated in Fig. 6.

2.4.3 Data Preprocessing

FindBugs, reports violations by specifying the start and
end lines of a code hunk which is relevant to the reported
violation: this is considered as the location of the violation.
It is challenging to mine common code patterns from these
code hunks directly as they are just textual expression. A
given violation code is therefore parsed into a refined AST
tree and converted into a token vector. Token vectors are
further embedded with Word2Vec [44] and converted into
numeric vectors which can be fed to CNNs to learn discrim-
inating features of violation code.

Violation Tokenization. In order to represent violations
with numeric vectors, in this study, violations are tokenized
into textual vectors in the first step. All code hunks of viola-
tions are parsed with the refined AST tree and are tokenized

into textual vectors by traversing their refined AST trees
with the depth-first search algorithm to obtain two kinds of
tokens: one is the AST node type and another is the identi-
fier (i.e., raw token) of this node. For example, the code
“int a” is tokenized as a vector of four tokens (Primiti-
veType, int, Variable, a). A given violation is thus
represented as a vector of such tokens. Noisy information of
nodes (e.g., meaningless variable names such as ‘a’, ‘b’, etc.)
can interfere with identifying similar violations. Thus, all
variable names are renamed as the combination of their
data type and string ‘Var’. For example, variable a in “int
a” is renamed as intVar.

Token Embedding with Word2Vec. Widely adopted deep
learning techniques require numeric vectors with the same
size as the format of input data. Tokens embedding is per-
formed with Word2Vec [44] which can yield a numeric vec-
tor for each unique token. Eventually, a violation is then
embedded as a two-dimensional numeric vector (i.e., a vec-
tor of the vectors embedding the tokens). Since token vec-
tors may have different sizes throughout violations, the
corresponding numeric vectors must be padded to comply
with deep learning algorithms requirements. We follow the
workaround tested by Wang et al. [45] and append 0 to all
vectors to make all vector sizes consistent with the size of
the longest vector.

Word2Vec9 [44] is a two-layer neural network, whose
main purpose is to embed words, i.e., convert each word
into a numeric vector.

Numerical representations of tokens can be fed to deep
learning neural networks or simply queried to identify rela-
tionships among words. For example, relationships among
words can be computed by measuring cosine similarity of
vectors, given that Word2Vec strives to regroup similar
words together in the vector space. Lack of similarity is
expressed as a 90-degree angle, while complete similarity of 1
is expressed as a 0-degree angle. For example, in our experi-
ment, ‘true’ and ‘false’ are boolean literal in Java. There is a
cosine similarity of 0.9433768 between ‘true’ and ‘false’, the
highest similarity between ‘true’ and any other token.

The left side of Fig. 8 shows how a violation is vectorized.
The n� k represents a two-dimensional numeric vector of
an embedded and vectorized violation, where n is the num-
ber of rows and denotes the size of the token vector of a vio-
lation. A row represents a numeric vector of an embedded
token. k is the number of columns and denotes the size of a
one-dimensional numeric vector of an embedded token.
The last two rows represent the appended 0 to make all
numeric vector sizes consistent.

2.4.4 Code Patterns Mining

Although violations can be parsed and converted into two-
dimensional numeric vectors, it is still challenging to mine
code patterns given that noisy information (e.g., specific
meaningless identifiers) can interfere with identifying simi-
lar violations. Deep learning has recently been shown prom-
ising in various software engineering tasks [18], [36], [45].
In particular, it offers a major advantage of requiring less
prior knowledge and human effort in feature design for
machine learning applications. Consequently, our method

9. https://code.google.com/archive/p/word2vec/
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is designed to deeply learn discriminating features for min-
ing code patterns of violations. We leverage CNNs to per-
form deep learning of violation features with embedded
violations, and also use X-means clustering algorithm to
cluster violations with learned features.

Feature Learning with CNNs. Fig. 8 shows the CNNs archi-
tecture for learning violation features. The input is two-
dimensional numeric vectors of preprocessed violations. The
alternating local-connected convolutional and subsampling
layers are used to capture the local features of violations. The
dense layer compresses all local features captured by former
layers. We select the output of the dense layer as the learned
violation features to cluster violations. Note that our approach
uses CNNs to extract features of violation code fragments, in
contrast to normal supervised learning applications that clas-
sify labelswith training process to showpatterns clearly.

Violations Clustering and Patterns Labelling. With learned
features of violations, cluster violations with X-means cluster-
ing algorithm. In this study, we use Weka’s implementa-
tion [46] ofX-means to cluster violations. Finally, wemanually
label each cluster with identified code patterns of violations
from clustered similar code fragments of violations to show
patterns clearly. Note that, the whole process of mining pat-
terns is automated.

2.5 Mining Common Fix Patterns

Our goal in this step is to summarize how a violation is
resolved by developers. To achieve this goal, we collect vio-
lation fixing changes and proceed to identify their common
fix patterns. The approach of mining common fix patterns is
similar to that of mining common code patterns. The differ-
ences lie in the data collection and tokenization process.
Before describing our approach of mining common fix pat-
terns, we formalize the definitions of patch and fix pattern.

2.5.1 Preliminaries

A patch represents a modification carried on a program
source code to repair the program which was brought to an

erroneous state at runtime. A patch thus captures some
knowledge on modification behavior, and similar patches
may be associated with similar behavioral changes.

Definition 4 Patch (P). A patch is a pair of source code frag-
ments, one representing a buggy version and another as its
updated (i.e., bug-fixing) version. In the traditional GNU diff
representation of patches, the buggy version is represented by
lines starting with -, while the fixed version is represented by
lines starting with +. A patch is formalized as:

P ¼ ðFragb; FragfÞ; (4)

where Fragb and Fragf are fragments of buggy/fixing code,
respectively; both are a set of text lines. Either of the two sets
can be an empty set but cannot be empty simultaneously. If
Fragb ¼ ;, the patch purely adds a new line(s) to fix a bug. On
the other hand, the patch only removes a line(s) if Fragf ¼ ;.
Otherwise (i.e., both sets are not empty), the patch replaces at
least one line.

Fig. 11 shows an example of a patch which fixes a bug of
converting a String List into a String Array. Fragb is
the line that starts with - while Fragf is the lines that start
with +.

By analyzing the differences between the buggy code
and the fixing code of the patch in Fig. 11, the patch can be
manually summarized as an abstract representation shown
in Fig. 12 which could be used to address similar bugs.
Abstract representation indicates that specific identifiers
and types are abstracted from concrete representation.

Abstract patch representations can be formally defined as
fix patterns. Coccinelle [47] and its semantic patches provide
a metavariable example of how fix patterns can be lever-
aged to systematically apply common patches, e.g., to
address collateral evolution due to API changes [48]. Manu-
ally summarizing fix patterns from patches is however
time-consuming. Thus, we are investigating an automated
approach of mining fix patterns. To that end, we first pro-
vide a formal definition of a fix pattern.

Fig. 8. CNN architecture for extracting clustering features. C1 is the first convolutional layer, and C2 is the second one. S1 is the first subsampling
layer, and S2 is the second one. The output of dense layer is considered as extracted features of code fragments and will be used to do clustering.
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Definition 5 Fix Pattern (FP). A fix pattern is a pair of a
code context extracted from a buggy code block and a set of
change operations, which can be applied to a given buggy
code block to generate fixing code. This can be formalized as:

FP ¼ ðCtx;COÞ; (5)

where Ctx represents the code context that is an abstract repre-
sentation of the buggy code block. CO is a set of change opera-
tions (See Definition 6) to be applied to modifying the buggy
code block.

Definition 6 Change Operation (O). A change operation
is a three-value tuple which contains a change action, a source
code entity and a set of sub change operations. This can be for-
malized as:

O ¼ ðAction; Sce; COÞ; (6)

where Action is an element of an action set (i.e., {UPD, DEL,

INS, MOV}) working on the entity (Sce). UPD is an update
action which means updating the target entity, DEL is a delete
action which denotes deleting the target entity, INS is an
insert action which represents inserting a new entity, and
MOV is a move action which indicates moving the target
entity. CO is a set of sub change operations working on the sub
entities of the current action’s entity. When an operation acts
on a leaf node entity, CO ¼ ;.
For example, Fig. 10 shows the set of change operations

of the patch in Fig. 11. o1 is the change operation working
on the root entity ReturnStatement. UPD is the Action,
(ReturnStatement, return) is the root entity being
acted, and o2 is the sub change operation acting on the sub
entity CastExpression of the root entity. It is the same as
others. o6, o8, and o9 are the change operations working on
leaf node entities. So that, the sets of their sub change opera-
tions are null.

A fix pattern is used as a guide to fix a bug. The fixing pro-
cess is defined as a bug fix process presented in Appendix A,
which is available online, for interested readers.

2.5.2 Pattern Mining Process

Fig. 11 shows a concrete patch that can only be used to fix
related specific bugs as it limits the syntax and semantic
structure of the buggy code. The statement is limited to be a
Return Statement and the parameterized type of the
List and the Array is also limited to String. Addition-
ally, the variable name list can also interfere with the
matching between this patch and similar bugs. However,
the abstract patch in Fig. 12 abstracts the aforementioned
interferon, which can be matched with various mutations of
the bug converting a List into an Array. Hence, it is neces-
sary to mine common patch patterns frommassive and vari-
ous patches for specific bugs.

Our conjecture is that common fix patterns can be mined
from large change sets. Exposed bugs are indeed generally
not new and common fix patterns may be an immediate and
appropriate way to address them automatically. For exam-
ple, when discussing the deluge of buggy mobile software,
Andy Chou, a co-designer of the Coverity bug finding tool,
reported that, based on his experience, the found bugs
are nothing new and are “actually well-known and well-
understood in the development community - the same use
after free and buffer overflow defects we have seen for deca-
des” [10]. In this vein, we design an approach to mine com-
mon fix patterns for static analysis violations by extracting
changes that represent developers’ manual corrections. Fig. 9
illustrates our process formining common fix patterns.

Data Preprocessing. As defined in Definition 5, a fix pat-
tern contains a set of change operations, which can be
inferred by comparing the buggy and fixed versions of
source code files. In our study, code changes of a patch
are described as a set of change operations in the form of
Abstract Syntax Tree differences (i.e., AST diffs). In contrast
with GNU diffs, which represent code changes as a pure
text-based line-by-line edit script, AST diffs provide a hier-
archical representation of the changes applied to the differ-
ent code entities at different levels (statements, expressions,
and elements). We leverage the open source GumTree [16]
tool to extract and describe change operations implemented
in patches. GumTree, and its associated source code, is pub-
licly available, allowing for replication and improvement,
and is built on top of the Eclipse Java model.10

All patches are tokenized into textual vectors by traversing
their AST-level diff tree with the deep-first search algorithm
and extracting the action string (e.g., UPD), the entity type
(e.g., ReturnStatement) and the entity identifier (e.g., return) as
tokens of a change action (e.g., UPD ReturnStatement return).

Fig. 10. A set of change operations of the patch in Fig. 11.

Fig. 9. Overview of our fix patterns mining method.

10. http://www.vogella.com/tutorials/EclipseJDT/article.html
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A given patch is thus represented as a list of such tokens, fur-
ther embedded and vectorized as a numeric vector using the
samemethod described in Section 2.4.3.

Fix Patterns Mining. Patches can be considered as a spe-
cial kind of natural language text, which programmers
leverage daily to request and communicate changes in their
community. Currently available patch tools only perform
directly the specified operations (e.g., remove and add lines
for GNU diff) so far without the interpretation of what the
changes are about. Although all patches can be parsed and
converted into two-dimensional numeric vectors, it is still
challenging to mine fix patterns given that noisy change
information (e.g., specific changes) can interfere with identi-
fying similar patches. Thus, our method is designed to effec-
tively learn discriminating features of patches for mining fix
patterns.

Similarly to the case of violation code pattern mining, we
leverage CNNs to perform deep learning of patch features
with preprocessed patches, and X-means clustering algo-
rithm to automatically cluster similar patches together with
learned features. Finally, we manually label each cluster
with fix patterns of violations abstracted from clustered
patches to show fix patterns clearly.

3 EMPIRICAL STUDY

3.1 Datasets

We consider project subjects based on a curated database
of Github.com provided through GHTorrent [49]. We
select projects satisfying three constraining criteria: (1) a
project has, at least, 500 12 commits, (2) its main language is
Java, and (3) it is unique, i.e., not a fork of another project.
As a result, 2014 projects are initially collected. We then
filter out projects which are not automatically built with
Apache Maven. Subsequently, for each project, we execute
FindBugs on the compiled13 code of its revisions (i.e., com-
mitted version). If a project has at least two revisions in
which FindBugs can successfully identify violations, we
apply the tracking procedure described in Section 2.2 to
collecting data.

Table 1 shows the number of projects and violations used
in this study. There are 730 projects with 291,615 commits
where 250,387,734 violations are detected; these violations
are associated with 400 types defined by FindBugs. After
applying our violation tracking method presented in
Section 2.2 to these violations, as a result, 16,918,530 distinct
violations are identified.

3.2 Statistics on Detected Violations

We start our study by quickly investigating RQ1: “to what
extent do violations recur in projects?”. We focus on three
aspects of violations: number of occurrences, spread in proj-
ects and category distributions. Given that such statistics
are merely confirming natural distributions of the phenome-
non of defects, we provide all the details in the Appendix B,
available in the online supplemental material of this paper.
Interested readers can also directly refer to the replication
package (including code and data) at:

https://github.com/FixPattern/findbugs-violations.

Overall, we have found that around 10 percent of viola-
tion types are related to about 80 percent of violation
occurrences. However, only 200 violation types are
spread over more than 100 projects (i.e., 14 percent of the
subjects), and some violation types which are the most
widespread (i.e., top-50) actually have less occurrences
than lesser widespread ones. Finally, although most
violation types defined by FindBugs are related to
Correctness, the clear majority (66 percent) of violation
occurrences are associated with Dodgy Code and Bad
Practice. Security-related violations account only for
0.5 percent of violation occurrences, although they are
widespread across 30 percent of projects.

3.3 What Types of Violations Are Fixed?

Although overall statistics of violation detections show that
there is variety in recurrence of violations, we must investi-
gate what types of violations are fixed by developers? (RQ2).
We provide in Appendix C, available in the online supple-
mental material, more details on the following three sub-
questions that are considered to thoroughly answer this
question.

� RQ2-1: Which types of violations are developers
most concerned about?

� RQ2-2: Are fixed violations per type proportional to
all detected violation?

� RQ2-3: What is the distribution of fixed violations
per category?

We refer the interested reader to this part for more statis-
tics and detailed insights.

TABLE 1
Subjects Used in This Study

# Projects 730
# Commits 291,615
# Violations (detected) 250,387,734
# Distinct violations 16,918,530
# Violations types 400

Fig. 11. Example of a patch taken from FilenameUtils.java file within
Commit 09a6cb in project commons-io.11

Fig. 12. Example of an abstract representation of the patch in Fig. 11.

11. https://commons.apache.org/proper/commons-io/
12. A minimum number of commits is necessary to collect a suffi-

cient number of violations, which will be used for violation tracking.
13. FindBugs runs on compiled bytecode (cf. Section 2.1).

LIU ET AL.: MINING FIX PATTERNS FOR FINDBUGS VIOLATIONS 173

Authorized licensed use limited to: Kyungpook National Univ. Downloaded on June 08,2021 at 05:21:09 UTC from IEEE Xplore.  Restrictions apply. 

Github.com
https://github.com/FixPattern/findbugs-violations
https://commons.apache.org/proper/commons-io/


Overall, we have identified 88,927 violation instances
which have been fixed by developer code changes. We note
that we could not identify fixes for some 69 (i.e., 17 percent)
types of violations, nor in 183 (i.e., 25 percent) projects.
Given the significantly low proportion of violations that
eventually get fixed, we postulate that some violation types
must represent programming issues that are neglected by
the large majority of developers. Another plausible explana-
tion is the limited use of violation checkers such as Find-

Bugs in the first place since 36 percent (273) of the projects
associated with FindBugs include at least one commit
referring to the FindBugs tool, and 1,944 (2 percent of
88,927) cases where the associated commit messages refer to
FindBugs.

Only a small fraction of violations are fixed by develop-
ers. This suggests these violations are related to a poten-
tially high false positive ratio in the static analysis tool,
or lack developer interest due to their minor severity.
There is thus a necessity to implement a practical priori-
tization of violations.

With respect to RQ2-1, we find that only 50 violation
types, i.e., 15 percent of the fixed violation types, are associ-
ated with 80 percent of the fixed violations, and only 63
(19 percent) fixed violation types are appearing in at least
10 percent of the projects.

Developers appear to be concerned about only a few
number of violation types. The top-2 fixed violation
types (SIC_INNER_SHOULD_BE_STATIC_ANON14 and
DLS_DEAD_LOCAL_STORE

15) are respectively perfor-
mance and Dodgy code issues.

With respect to RQ2-2,we compute a fluctuation ratiomet-
ric which, for a given violation type, assesses the differences
of ranking in terms of detection and in terms of fixes. Indeed
a given violation type may account for a very high x percent
of all violation detections, but account for only a low y per-
cent (i.e., y� x). Or vice versa. This metric allows to better
perceive how violations can be prioritized: for example, we
identified 4 violation types, including NM_CLASS_NAMING_

CONVENTION,16 have fluctuation ratio values higher than 10,
suggesting that, although they have high occurrence rates,

they have lower fix rates by developers. On the other hand,
violation type NP_NONNULL_RETURN_VIOLATION

17 has an
inversed fluctuation ratio of over 20, suggesting that although
it has low occurrences in detection, it has a high priority to be
fixed by developers.

Our detailed study of the differences between detection
and fix ratios provides data and insights to build detec-
tion report and fix prioritization strategies of violations.

Finally, with respect RQ2-3, our investigations revealed
that the top-50 fixed violation types are largely dominated
by Dodgy code, Performance and Bad Practice categories.
Although Correctness overall regroups the largest number
(33 percent) of fixed violation types, its types have, each, a
low number of fix occurrences. Interestingly, Internationaliza-
tion is also a common fixed category, with 6,719 fixed instan-
ces across 347 (63.3 percent) projects, with only two types
(DM_CONVERT_CASE18 and DM_DEFAULT_ENCODING

19)
which are among top-5 most occurring violation types and
among top-10most widespread throughout projects).

Overall, Dodgy code, Performance, and Bad Practice issues
are the most addressed by developers. Correctness issues,
however, although they are with to the majority of fixed
types, developers fail to address a large portion of them.
Compared to Internationalization, which are straightfor-
ward and resolved uniformly, the statistics suggest that
developers could accept to fix Correctness issues if there
were tool support.

3.4 Comparison Against Other Empirical Studies on
FindBugs Violations

The literature includes a number of studies related to Find-

Bugs violations. While our work includes such a study, it is
substantially more comprehensive and is based on more rep-
resentative subjects. As presented in Table 2, our study col-
lects data from 730 real-world projects (i.e., in the wild) where
400 violation types (of 9 categories) can be found. Other stud-
ies have only considered overall only 3 real-world projects.
Vetro et al. [50] collect data from 301 projects, but they are in-
the-lab projectswhichmay not be representative of real-world
development. Ayewah et al. [15] only investigated some

TABLE 2
Comparison of Empirical Studies on FindBugs Violations

Our study Ayewah et al. [15] Fixit [51] Vetro et al. [50]

Projects 730 projects
in the wild

Two projects
in the wild

One student project,
One project in the wild

301 projects
in the lab

# types 400 < 100 - 77
# categories 9 (all of them) 1 (Correctness) 6 -
# detected cases 16,918,530 1,506 10,479 1,692
# fixed cases 88,927 518 640 -
Objective Fix pattern mining Evaluating static

analysis warnings
Look into the value
of static analysis

Assess percentage and
type of violations

14. Inner class could be refactored into a named static inner class.
15. Dead store to local variable.
16. Class names should start with an upper case letter.

17. Method may return null, but is declared @Nonnull.
18. Consider using Locale parameterized version of invoked

method.
19. Reliance on default encoding.
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(< 100) Correctness-related violations. Fixit [51] studied viola-
tions at the category level and limited violations into six cate-
gories. Vetro et al. [50] studied 77 violation types but ignored
violation categories.

Additionally, our study investigates detected violation
distributions from three aspects: occurrences, spread, and
categories, which provides three different metrics to priori-
tize violations. Nevertheless, it should be noted that the false
positives of FindBugs could threaten the reliability of viola-
tion prioritization based on the statistics of detected viola-
tions. Previous studies [15], [50], [51] do not discuss this
aspect. To reduce this threat, we further investigate distribu-
tions of fixed violations, which represent violations that
attract developer attention for resolution, thus suggesting
higher probabilities for true positives. Our results provide
more reliable prioritizationmetrics for violations reporting.

We further note that these studies focused on objectives
that are different from ours. Ayewah et al. [15] focused on
evaluating the importance of static analysis warnings in
production software. In Fixit [51], the authors looked into
the value of FindBugs on finding program issues. Vetro
et al. [50] aimed at assessing the percentage and type of
issues of FindBugs that are actual defects. After going
through their research tracks, our work could be applied to
their research questions, but our eventual goal is to mine fix
patterns for FindBugs violations.

3.5 Code Patterns Mining

Empirical findings on violation tracking across the projects
showed that only a small fraction of violations are fixed by
developers. Thus, overall, the distribution of unfixed viola-
tions follow that of detection violations. We now investigate
the research question what kinds of patterns do unfixed and
fixed violations have respectively? (RQ3), focusing on the fol-
lowing sub-questions:

� RQ3-1: What are the common code patterns for
unfixed violations and fixed ones respectively?

� RQ3-2:What is the relationship or difference between
the common source code patterns of unfixed viola-
tions and fixed ones?

� RQ3-3: What are possible reasons for some violations
to remain unfixed?

To avoid noise in the dataset due to varying distribu-
tions, we focus on instances the instances of violations

where the violation types are among the top-50 types that
developers are concerned about (i.e., the most fixed ones).
Then, we apply the approach of mining code patterns pre-
sented in Section 2.4 to identify common code patterns of
unfixed violations and fixed ones respectively.

Disclaimer: Note that FindBugs produces a large num-
ber of false positives in two ways: 1) locations of detected
violations can be incorrectly reported by FindBugs, or 2)
the detected violations are correctly located, but developers
may still treat it as a false positive warning since it could
not be considered as a serious enough concern to fix. While
the second kind of false positives does not threaten patterns
mining, but the first kind does. To reduce the threat to valid-
ity due to false positives related to incorrect localization, we
focus on the pattern mining process on the recurrent fixed
violations: their locations are most likely correct given that
developers manually checked and addressed the issue.

3.5.1 Experiment Setup

FindBugs reports violations by specifying the start line and
the end line of the code hunk that is relevant to the viola-
tion. Since it is challenging (and error-prone) to mine code
patterns by considering big code hunks, we limit our experi-
ments on small hunks. Fig. 13 illustrates the distribution of
sizes (i.e., the code line numbers of hunks) of the code
hunks associated with all violations.

For 89 percent of the violations, the relevant code hunk is
limited to 10 code lines or less. We have further manually
observed that a line-based calculation of hunk size is not
reliable due to the presence of noise caused by comments,
annotations and unnecessary blank lines, so we select viola-
tions by their tokens. Fig. 14 provides the distribution of
numbers of code tokens by violations. We discard outliers
and thus focus on violations where the code includes at
most 40 tokens extracted based on their refined AST trees
(cf. tree B in Fig. 7).

Following the methodology described in Section 2.4, vio-
lations are represented with numeric vectors using Word2-
Vec with the following parameters (Size of vector = 300;
Window size = 4; Min word frequency = 1)

Feature extraction is then implemented based on CNNs
whose parameters are listed in Table 3. The literature has
consistently reported that effective models for Word2Vec
and deep learning applications require well-tuned parame-
ters [17], [52], [53], [54], [55]. In this study, all parameters of
the two models are tuned through a visualizing network
training UI20 provided by DeepLearning4J.

Fig. 13. Hunk sizes’ distribution of all violations.

Fig. 14. Sizes’ distribution of all violation token vectors.

TABLE 3
Parameters Setting of CNNs

Parameters Values

# nodes in hidden layers 1000
learning rate 1e-3
Optimization algorithm stochastic gradient descent
pooling type max pool
activation (output layer ) softmax
activation (other layers) leakrelu
loss function mean squared logarithmic error

20. https://deeplearning4j.org/visualization
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Finally, Weka’s [46] implementation of X-means cluster-
ing algorithm uses the extracted features to find similar
code for each violation type. Parameter settings for the clus-
tering are enumerated in Table 4.

3.5.2 Code Patterns

Given that violation code fragments are represented in the
generic form of an AST, we can automatically mine patterns
by simply considering the most recurring fragment in a clus-
ter yielded by our approach as the pattern.We thenmanually
assess each pattern to assign a label to it. We investigate code
patterns on fixed violations and unfixed ones respectively.
Overall, while unfixed violations yield a few more patterns
than fixed violations, we find thatmost patterns are shared by
both unfixed and fixed sets. Table 5 shows some examples of
identified common code patterns of 10 violation types.

We manually checked the patterns yielded for the top-50
violation types and assessed these patterns with respect
to FindBugs’ documentation. For example, DM_NUMBER_
CTOR violation refers to the use of a number constructor to
create a number object, which is inefficient [14]. For
instance, using new Integer(...) is guaranteed to
always result in a new Integer object whereas Integer.
valueOf(...) allows caching of values to be done by the
compiler, class library, or JVM. Using cached values can
avoid object allocation and the code will be faster. Our
mined patterns are the five types of number creations with
number constructors. DM_FP_NUMBER_CTRO has the simi-
lar patterns with it. This example shows how violation code
patterns mined with our approach are consistent with the
static analysis tool documentation. We have carefully

checked the patterns for the top-50 violation types, and
found that for 76 percent, the patterns are adequate with
respect to the documentation. Appendix D, available in the
online supplemental material, provides details on 10 exam-
ple violation types.

Our code pattern mining approach yields patterns that
are consistent with the violation descriptions in docu-
mentation of the static analysis tool.

We focused our investigations on some of the patterns
that are yielded only from unfixed violation code, and
found that in some cases, there are inconsistencies between
the pattern and the bug description provided by FindBugs.

First, we consider a case where the number of patterns
discovered for a given violation type exceeds the number of
cases enumerated by FindBugs in its documentation.
MS_SHOULD_BE_FINAL is a violation type raised when the
analyzer encounters a static field that is public but not final:
such a field could be changed by malicious code or acciden-
tally from another package [14]. Besides public static field
declarations, the identified patterns on violation code of this
type include protected static field declarations, which is
inconsistent with the description by FindBugs. Fig. 15
shows an example of such inconsistent detection by Find-

Bugs in project BroadleafCommerce. When developers
confront FindBugs’ warning message against their code,
they may decide not to address such an undocumented bug.

Second, we consider a case where the mined pattern
is inconsistent with the documentation of the violation.
RI_REDUNDANT_INTERFACES is a warning on a class
which implements an interface that has already been imple-
mented by one of the class’ super classes [14]. Its mined
common code pattern is associated to a super constructor
invocation. However, the violation location is positioned on
the class declaration line. After manually checking some
RI_REDUNDANT_INTERFACES cases, we find that the Java
classes with RI_REDUNDANT_INTERFACES violations ind-
eed have a redundant interface(s) in their class declaration
code part. However, some detected RI_REDUNDANT_

INTERFACES violations locate on the super constructor
invocations but not the class declaration code, which could
confuse developers and increase the perception of high false
positives rates. For example, in Fig. 16, the exact position of

TABLE 4
Parameters Setting of X-Means

Parameters Values

Distance Function Euclidean Distance
KD Tree true
# max iterations 1000
# max K-means 500
# max K-means of children 500
# seed 500
# max clusters 500
# min clusters 1

TABLE 5
Common Code Pattern Examples of Violations

Violation Type Common Source Code Pattern(s)

DM_CONVERT_CASE �1 stringExp.toLowerCase(),�2 stringExp.toUpperCase().

RCN_REDUNDANT_NULLCHECK_OF_NONNULL_

VALUE

�1 if (exp == null ...) {...},�2 if (exp != null ...) {...},�3 exp == null ? exp1 : exp2,�4 exp != null ? exp1 : exp2.

BC_UNCONFIRMED_CAST �1 T1 v1 = (T1) v2/exp,�2 v1 = (T1) v2/exp,�3 ((T1) v2).exp.

MS_SHOULD_BE_FINAL public/protected static T1 v1 = exp.

RV_RETURN_VALUE_IGNORED_

BAD_PRACTICE

�1 fileExpe.mkdirs(),�2 fileExpe.mkdir(),�3 fileExpe.delete(),�4 fileExpe.createNewFile(),�5 other exp.method_invoation() returns a value.

DM_NUMBER_CTOR �1 new Long(...),�2 new Integer(...),�3 new Short(...),�4 new Byte(...),�5 new Char(...).

SBSC_USE_STRINGBUFFER_CONCATENATION �1 stringVariable += stringExp,�2 stringVariable = stringExp1 + stringExp2.

DM_BOXED_PRIMITIVE_FOR_PARSING �1 Integer.valueOf(str),�2 Long.valueOf(str).

PZLA_PREFER_ZERO_LENGTH_ARRAYS return null.

ES_COMPARING_STRINGS_WITH_EQ �1 stringExp1 == stringExp2,�2 stringExp1 != stringExp2.
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the RI_REDUNDANT_INTERFACES violation should be the
“implements Serializable” part (L-33). FindBugs however
reports the position at L-49 (highlighted with red back-
ground) which is not precise and can even confuse develop-
ers on why the code is a violation and how to resolve it.

Some violations remain unfixed as a result of their
imprecise detection. False positives in FindBugs can be
improved by addressing some issues with accurate
reporting of violation locations, as well as updating the
documentation.

Finally, we note that it is challenging to identify common
code patterns for some violation types for two main reasons.

First, some clusters are too small, indicating that the vio-
lation instances, despite the abstraction with AST, are too
specific. For example, DLS_DEAD_LOCAL_STORE violations
are about variable assignments which are specific operators
in source code. It is challenging to identify any common
code pattern except for the pattern, variable assignment state-
ment, identified at the level of AST node types. With this
information alone, it is practically impossible to figure out
why a code fragment is related to a DLS_DEAD_LOCAL_

STORE violation. This is a potential reason why some
DLS_DEAD_LOCAL_STORE violations remain unfixed.

Second, again, FindBugs cannot locate some violations
accurately. We enumerate three scenarios:

� The detected violation code is the method body but
not the method name. For example, NM_METHOD_

NAMING_CONVENTION violations violate the method
naming convention but not method bodies, however
the source code of these violations tracked with their
position provided by FindBugs is themethod bodies.
Similar source code can be clustered into the same
cluster to identify some patterns which cannot explain
how the violation is induced, but could help interpret
the behavior of these methods. Actually, the method

name is the abstract description of method body, so
we think that it is inefficient to identify the violation of
method names by their naming convention without
considering the behavior ofmethod bodies.

� The second case is that the source code of violations is
i r re levant source code . For ins tance , UWF_
FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR

indicates that a field is never initialized within any
constructor, loaded and referenced without a null
check [14]. According to observing the instances of
this violation type, the source code of these violations
is the statements of onemethod body in these violated
Java class, which is irrelevant to the violation type.
Some similar source code can be clustered together to
obtain some patterns which still cannot explain the
violation type. Therefore, it is inconsistent with the
bug description of this type.

� The third case is that the violation locates on class
body rather the declaration of class name. SE_NO_
SERIALVERSIONID means the current violated Java
class implements the Serializable interface, but
does not define a serialVersionUID field [14].
The positions of this kind of violations provided by
FindBugs are located in the class body. It is impos-
sible to identify the common code patterns of this
violation type which can interpret why the source
code makes the violations.

These inaccurate localized violations could mislead or
confuse developers, which may cause that developers do
not prefer to fix these kinds of violations. In this study, we
re-locate the violations of serialVersionUID and RI_

REDUNDANT_INTERFACES to class declarations. Combin-
ing the results with source code changes of type-related
fixed violations, it is easy to follow why the source code
fragment is a violation. Fig. 17 shows an example of fixing a
RI_REDUNDANT_INTERFACES violation. Interface java.

util.Map has been implemented in the super class
AbstractMap of the current class Map. Thus, it is fixed by
removing the redundent java.util.Map interface.

Many violation types are associatedwith code fromwhich
patterns can be inferred. Such patterns are relevant for
immediately understanding how violations are induced.
For some other violations code however it is difficult to
mine patterns, partly due to the limitation of FindBugs
and the fact that the code fragment is too specific.

3.6 Fix Patterns Mining

We now investigate our ultimate research question on how
are the violations resolved if fixed? (RQ4). To that end, we first

Fig. 17. Example of a fixed RI_REDUNDANT_INTERFACES violation,
taken from commit ea876b in datanucleus-core

22 project.

Fig. 16. Example of a miss-located RI_REDUNDANT_ INTERFACES vio-
lation, taken from commit 84a642 in project commons-math.

Fig. 15. Example of a detected MS_SHOULD_BE_FINAL violation, taken
from project BroadleafCommerce.21

21. https://github.com/BroadleafCommerce/BroadleafCommerce 22. https://github.com/datanucleus/datanucleus-core
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dissect the violation fixing changes and propose to cluster
relevant fixes to infer common fix patterns following the
CNN-based approach described in Section 2.5.

We curate our dataset of 88,927 violation fixing changes
by filtering out changes related to:

� 4,682 violations localized in test files. Indeed,
we focus on mining patterns related to developer
changes on actual program code.

� 7,010 violations whose fix do not involve a modifica-
tion in the violation location file. This constraint,
which excludes cases where long data flow may
require a fixing change in other files, is dictated by
our automation strategy for computing the AST edit
script, which is simplified by focusing on the viola-
tion location file.

� 7,121 violations where the associated fix changes are
not local to the method body of the violation.

� 25,464 violations where the fixing changes are app-
lied relatively far away from the violation location.
We consider that the corresponding AST edit script
matches if the change actions are performed within
�3 lines of the violation location. This constraint con-
servatively helps to further remove false positive
cases of violations which are actually not fixed but
are identified as fixed violations due to limitations in
violation tracking.

� 9,060 violations whose code or whose fix code contain
a large number of tokens. In previous works, Herzig
et al. [56] and Kawrykow et al. [57] have found that
large source code change hunks generally address
feature additions, refactoring needs, etc., rather than
bug fixes. Pan et al. [58] also showed that large bug
fix hunk pairs do not contain meaningful bug fix
patterns, and most bug fix hunk pairs (91-96 percent)
are small ones. Ignoring large hunk pairs has minimal
impact on analysis. Consequently, we use the same
threshold (i.e., 40, presented in Section 3.5) of tokens
to select fixed violations.

Overall, our fix pattern mining approach is applied to
35,590 violation fixing changes, which are associated with
288 violation types. Parameter values of Word2Vec, CNNs
and X-means are identical to those used for common code
patterns mining (cf. Section 3.5). In this study, once a cluster

of similar changes, for a given violation type, are found, we
can automatically mine the patterns based on the AST diffs.
Although approaches such as the computation of longest
common subsequence of repair actions could be used to
mine fix patterns, we observe that they do not always pro-
duce semantically meaningful patterns. Thus, we consider a
naive but empirically effective approach of inferring fix pat-
terns by considering the most recurring AST edit script in a
given cluster, i.e., the code change that occurs identically
the most. Finally, labels to each change pattern are assigned
manually after a careful assessment of the pattern relevance.

For the experiments, we focus on the top-50 fixed viola-
tion types for the mining of fix patterns. Table 6 summarizes
10 example cases of violation types with details, in natural
language, on the fix patterns.

Fig. 18 presents an inferred pattern in terms of AST edit
script for violation type RCN_REDUNDANT_NULLCHECK

_OF_NONNULL_VALUE described in Table 6. For AST-level
representation of patterns of other violations, we refer the
reader to the replication package.

Overall, the pattern presented in AST edit script format,
which should be translated into fix changes to “delete the null
check expression” requires some code context to be concretized.
When the var23 != null expression is the null-checking con-
ditional expression of an IfStatement, the concrete patch
must delete the violated expression. Similarly, when the exp
== null expression is the condition expression of an
IfStatement, the patch also removes the null-checking
expression.When exp == null or exp != null expression is
one of the condition expressions of an IfStatement, the
patch is deleting the violated expression. This example shows
the complexity of automatically generating patches from
abstract fix patterns, an entire research direction which is left
for future work. For now, we generate the patches manually
based on themined fix patterns.

Our proposed fix pattern mining approach can effectively
cluster similar changes of fixing violations together. And
the fix pattern mining protocol is applicable to derive
meaningful patterns.

TABLE 6
Common fix Pattern Examples of Fixed Violations

Violation Type Fix Pattern(s)

DM_CONVERT_CASE ADD a rule of Locale.ENGLISH into toLowerCase()/toUpperCase().

RCN_REDUNDANT_NULLCHECK_OF_NONNULL_

VALUE

Delete the null check expression.�2 Delete the null check IfStatement.

BC_UNCONFIRMED_CAST �1 Delete the violated statement,�2 Delete the cast type,�3 Replace CastExpression with a null value.

MS_SHOULD_BE_FINAL Add a “final” modifier.

RV_RETURN_VALUE_IGNORED_BAD_PRACTICE �1 Add an IfStatement to check the return value of violated source code.�2 Replace violated expression with a new method invocation.

DM_NUMBER_CTOR Replace the number constructor with a static number.valueOf() method.

SBSC_USE_STRINGBUFFER_CONCATENATION Replace the String type with the StringBuilder, and replace plus operator of StringVarialbe with the append

method of StringBuilder.

DM_BOXED_PRIMITIVE_FOR_PARSING Replace Number.valueOf() with Number.parseXXX() method.

PZLA_PREFER_ZERO_LENGTH_ARRAYS �1 Delete the buggy statement,�2 Replace the null value with an empty array.

ES_COMPARING_STRINGS_WITH_EQ Replace the “==” or “!=” InfixExpression with a equals() method invocation.

23. var represents any variable being checked.
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Listing 1. Violation types failed to be identified fix
pattern

1. UWF_FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR

2. SF_SWITCH_NO_DEFAULT

3. UWF_UNWRITTEN_FIELD

4. IS2_INCONSISTENT_SYNC

5. VA_FORMAT_STRING_USES_NEWLINE

6. SQL_PREPARED_STATEMENT_GENERATED_FROM_

NONCONSTANT_STRING

7. OBL_UNSATISFIED_OBLIGATION

8. OBL_UNSATISFIED_OBLIGATION_EXCEPTION_EDGE

9. OS_OPEN_STREAM

10. OS_OPEN_STREAM_EXCEPTION_PATH

11. ODR_OPEN_DATABASE_RESOURCE

12. NP_PARAMETER_MUST_BE_NONNULL_

BUT_MARKED_AS_NULLABLE

Listing 1 enumerates 12 violation types for which our
mining approach could not yield patterns, given that the
number of samples per cluster was small, or that within a
cluster we could not find strictly redundant change actions
sequences. Our observations of such cases revealed the fol-
lowing causes of failure in fix pattern mining:

� violations can be fixed by adding completely new
node types. For example, one fix pattern of RV_RE-
TURN_VALUE_IGNORED_BAD_PRACTICE violations
is replacing the violated expression with a method
invocation which encapsulates the detailed source
code changes.

� violations can occur on specific source code frag-
ments from which it is even difficult to mine pat-
terns. Fixes for such violations generally do not
share commonalities.

� violations can have fix changes applied in separate
region than the violation code location. Since we did

not consider such cases for the mining, we systemati-
cally miss bottom-7 violation types of Listing 1
which are in this case.

� violations can be associated to a String literal.
For example, we observe that the fixing changes
of VA_FORMAT_STRING_USES_NEWLINE violations
are replacing “nn” with “%n” within strings. Unfor-
tunately, our AST nodes are focused on compilable
code tokens, and thus changes in String literal are
ignored to guarantee sufficient abstraction from con-
crete patches.

3.7 Usage and Effectiveness of Fix Patterns

We finally investigate whether fix patterns can actually help
resolve violations in practice? (RQ5). To that end, we consider
the following sub-questions:

� RQ5-1: Can fix patterns be applied to automate the
management of some unfixed violations?

� RQ5-2: Can fix patterns be leveraged as ingredients
for automated repair of buggy programs?

� RQ5-3: Can fix patterns be effective in systematizing
the resolution of FindBugs violations in the wild?

We recall that our work automates the generation of fix
patterns. Patch generation is out of scope, and thus will be
performed manually (based on the mined fix patterns), tak-
ing into account the code context.

3.7.1 Resolving Unfixed Violations

We apply fix patterns to a subset of unfixed violations in our
subjects following the process illustrated in Fig. 19. For a
given unfix violation, we search for the top-k25 most suitable
fix patterns to generate patches. To that end, we consider
cosine similarity between the violation code features vector
(built with CNNs in Section 2.4.3) and the features vector of
the centroid fixed violation in the cluster associated to each
fix pattern.

A fix pattern is regarded as a true positive fix pattern for
an unfixed violation, if a patch candidate derived from this
pattern is addressing the violation. We check this by ensur-
ing that the resulting program after applying the patch can-
didates passes compilation and all tests, FindBugs no
longer raises a warning at this location, and manual check-
ing by the authors has not revealed any inappropriate
change of semantics in program behaviour.

Test data: We collect a subset of unfixed violations in the
top-50 fixed violation types (described in Section 3.5) as the
testing data of this experiment to evaluate the effectiveness
of fixed patterns. For each violation type, at most 10 unfixed
violation instances, which are the most similar to the cent-
roids of the corresponding fixed violations clusters, are
selected as the evaluation subjects.

Results: Table 7 presents summary statistics on unfixed
violations resolved by our mined fix patterns. Overall,
among the selected 500 unfixed violations in the test data,
127 (25.4 percent) are fixed by the most similar matched fix
patterns (i.e., top-1), 188 (37.6 percent) are fixed by a pattern
among the top-5, and 203 (40.6 percent) are fixed within the

Fig. 18. Example of a fix pattern for RCN_REDUNDANT_NULL CHECK_

OF_NONNULL_VALUE violation inferred from a violation fix instance
taken from commit a41eb9 in project apache-pdfbox.24

24. https://github.com/apache/pdfbox 25. k ¼ 10 in our experiments
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TABLE 7
Unfixed-Violations Resolved by Fix Patterns

Violation types Top 1 Top 5 Top 10 Total

RI_REDUNDANT_INTERFACES 10 10 10 10
SE_NO_SERIALVERSIONID 10 10 10 10
UPM_UNCALLED_PRIVATE_METHOD 10 10 10 10
DM_NUMBER_CTOR 9 10 10 10
DM_FP_NUMBER_CTOR 9 10 10 10
DM_BOXED_PRIMITIVE_FOR_PARSING 8 9 10 10
DM_CONVERT_CASE 7 9 10 10
MS_SHOULD_BE_FINAL 7 9 9 10
PZLA_PREFER_ZERO_LENGTH_ARRAYS 7 7 8 10
RCN_REDUNDANT_NULLCHECK_WOULD _HAVE_BEEN_A_NPE 6 8 8 10
RV_RETURN_VALUE_IGNORED_BAD_PRACTICE 6 7 8 10
SBSC_USE_STRINGBUFFER_CONCATENATION 4 10 10 10
MS_PKGPROTECT 4 9 9 10
EI_EXPOSE_REP2 4 4 5 10
DM_DEFAULT_ENCODING 4 5 5 10
WMI_WRONG_MAP_ITERATOR 3 7 9 10
UC_USELESS_CONDITION 3 6 6 10
ES_COMPARING_STRINGS_WITH_EQ 2 8 10 10
RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE 3 4 4 10
SIC_INNER_SHOULD_BE_STATIC_ANON 3 3 3 10
UCF_USELESS_CONTROL_FLOW 2 9 10 10
BC_UNCONFIRMED_CAST_OF_RETURN_VALUE 2 4 4 10
DLS_DEAD_LOCAL_STORE 2 3 4 10
NP_NULL_ON_SOME_PATH 1 5 7 10
BC_UNCONFIRMED_CAST 1 1 1 10
UC_USELESS_OBJECT 0 8 8 10
NP_NULL_ON_SOME_PATH_FROM_RETURN_VALUE 0 3 5 10
VA_FORMAT_STRING_USES_NEWLINE 0 0 0 10
UWF_FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR 0 0 0 10
DE_MIGHT_IGNORE 0 0 0 10
EI_EXPOSE_REP 0 0 0 10
IS2_INCONSISTENT_SYNC 0 0 0 10
NM_METHOD_NAMING_CONVENTION 0 0 0 10
NP_LOAD_OF_KNOWN_NULL_VALUE 0 0 0 10
NP_NONNULL_RETURN_VIOLATION 0 0 0 10
NP_PARAMETER_MUST_BE_NONNULL _BUT_MARKED_AS_NULLABLE 0 0 0 10
OBL_UNSATISFIED_OBLIGATION 0 0 0 10
OBL_UNSATISFIED_OBLIGATION_EXCEPTION_EDGE 0 0 0 10
ODR_OPEN_DATABASE_RESOURCE 0 0 0 10
OS_OPEN_STREAM 0 0 0 10
OS_OPEN_STREAM_EXCEPTION_PATH 0 0 0 10
REC_CATCH_EXCEPTION 0 0 0 10
RV_RETURN_VALUE_IGNORED_NO_SIDE_EFFECT 0 0 0 10
SF_SWITCH_NO_DEFAULT 0 0 0 10
SIC_INNER_SHOULD_BE_STATIC 0 0 0 10
SQL_PREPARED_STATEMENT_GENERATED _FROM_NONCONSTANT_STRING 0 0 0 10
ST_WRITE_TO_STATIC_FROM_INSTANCE_METHOD 0 0 0 10
URF_UNREAD_PUBLIC_OR_PROTECTED_FIELD 0 0 0 10
URF_UNREAD_FIELD 0 0 0 10
UWF_UNWRITTEN_FIELD 0 0 0 10
Total 127(25.4%) 188(37.6%) 203(40.6%) 500

Identified fix patterns are applied to fixing a subset of unfixed violations in our subjects.

Fig. 19. Overview of fixing similar violations with fix patterns.
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top-10. The matched positive fix patterns mainly cluster on
top-5 fix pattern candidates, which are a few less than the
top-10 range. This suggests that enlarging the search space
of fix pattern candidates cannot effectively find positive fix
patterns for more target violations.

Among the 203 fixed unfixed-violations, only 3 of
them are fixed by matched fix patterns collected across
violation types. We observe that DM_NUMBER_CTOR and
DM_FP_NUMBER_CTOR have similar fix patterns. We use
the fix patterns of DM_FP_NUMBER_CTOR to match fix
pattern candidates for DM_NUMBER_CTOR violations.
The fix patterns of DM_FP_NUMBER_CTOR can fix the
DM_NUMBER_CTOR violations, and vice versa.

Almost half of the unfixed violations in a sampled data-
set can be systematically resolved with mined fix pat-
terns from similar violations fixed by developers. 1 out
of 4 of these unfixed violations are immediately and suc-
cessfully fixed by the first selected fix pattern.

We note that fix patterns for 23 violation types are effec-
tive in resolving any of the related unfixed violations. There
are various reasons for this situation, notably related to the
specificity of some violation types and code, the imprecision
in FindBugs violation report, or the lack of patterns. We
provide detailed examples in Appendix E, available in the
online supplemental material.

3.7.2 Fixing Real Bugs

We attempt to apply fix patterns to relevant faults docu-
mented in the Defects4J [20] collection of real-world defects
in Java programs. This dataset is largely used in studies of
program repair [59], [60], [61].

Test Data: We run FindBugs on the 395 buggy versions
of the 6 Java projects used to establish Defects4J. As a result,
it turns out that 14 bugs can be detected as static analysis
violations detectable FindBugs. This is a reasonable num-
ber since most of the bugs in Defects4J are functional bugs
which fail under specific test cases rather than program-
ming rule violations.

For each relevant bug, we consider the fix patterns asso-
ciated to their violation types, and manually generate the
patches. When the generated patch candidate can (1) pass
the failed test cases of the corresponding bug and (2) Find-
Bugs cannot identify any violation at the same position,
then the matched fix pattern is regarded as a positive fix
pattern for this bug.

Results: Table 8 shows the results of this experiment. 4
out of the 14 bugs are fixed with the mined fix patterns and
the generated patches by fix patterns are semantically

equivalent to the patches provided by developers for these
bugs. The violations of 2 bugs are indeed eliminated by fix
patterns, but the generated patches lead to new bugs (in
terms of test suite pass). There are 2 bugs that can be
matched with fix patterns, but more context information
was necessary to fix them. For example, bug Lang23 is
identified as a EQ_DOESNT_OVERRIDE_EQUALS violation
and matched with a fix pattern: overriding the equals

(Obj o) method. It is difficult to generate a patch of
the bug with this fix pattern without knowing the property
values of the object being compared. The remaining 6
(out of 14 bugs) occurred on specific code, which is chal-
lenging to match plausible fix patterns for them without
any context.

Static analysis violations can represent real bugs that
make programs fail functional test cases. Our mined fix
patterns can contribute to automating the fix of such
bugs as experimented on the Defects4J dataset.

3.7.3 Systematically Fixing FindBugs Violations in

the Wild

We conduct a live study to evaluate the effectiveness of fix
patterns to systematize the resolutions of violations in open
source projects. We consider 10 open source Java projects
collected from Github.com on 30th September 2017 and
presented in Table 9. FindBugs is then run on compiled
versions of the associated programs to localize static analy-
sis violations.

Test Data: We focus on violation instances in the top-50
fixed violation types (presented in Section 3.3) are randomly
selected as our evaluating data. For each violation, patches
are generated manually in a similar process than the previ-
ous experiments: a patch must lead to a program that com-
piles, passes the test cases, and the previous violation
location should not be flagged by FindBugs anymore. For
each of such patch, we create a pull request and submit the
patch to the project developers.

Results: Overall, we managed to push 116 patches to the
developers of the 10 projects (cf. Table 10). 30 patches have
been ignored while 15 have been rejected. Nevertheless, 2
patches have been improved by developers and 67 have
been immediately merged. 1 of our pull requests to the
json-simple project was not merged, but an identical
patch has been applied later by the developers to fix the vio-
lation. Finally, the last patch (out the 116) has not been

TABLE 8
Fixed Bugs in Defects4J with Fix Patterns

Classification # bugs

Fixed bugs 4
Violations are removed but generates new bugs 2
Need more contexts 2
Failed to match plausible fix patterns 6
Total 14

TABLE 9
Ten Open Source Java Projects

Project Name # files # lines of code

json-simple 12 2,505
commons-io 117 28,541
commons-lang 148 77,577
commons-math 841 186,425
ant 859 219,506
cassandra 1,625 216,192
mahout 1,145 222,345
aries 1,570 216,646
poi 4,562 894,514
camel 8,119 1,079,671
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applied yet, but was attached to the issue tracking system,
probably for later replacement.

Table 11 presents the distribution of delays before accep-
tance for the 69 accepted (merged + improved) patches.
67 percent of the patches are accepted within 1 day, while
97 percent (67 + 30 percent) are accepted within 2 days.
Only 2 patches took a longer time to get accepted. We note
that this acceptance delay is much shorter than the median
distributions of the three kinds of patches submitted for the
Linux kernel [8].

As summarized in Table 12, we note that 21 accepted
patches were verified by at least two developers. Although
48 accepted patches were verified by only one developer,
we argue that this does not bias the results: first, the com-
mon source code patterns of these accepted fixed violation
types are consistent with the descriptions documented by
FindBugs; second, the matched fix patterns are likely
acceptable by developers since the patterns are common in
fixing violations as mined in the revision histories of real-
world projects.

Our mined fix patterns are effective to fix violations in
the wild. Furthermore, the generated patches are eventu-
ally quickly accepted by developers.

The live study further yields a number of insights related
to static analysis violations.

Insight 1. Well-maintained projects are not prone to vio-
lating commonly-addressed violation types. We note that 8
violation types (presented in Listing 2) do not appear at the
current revisions of the selected 10 projects. Type RI_RE-

DUNDANT_INTERFACES occurs only one time in json-

simple project. This finding suggests that violation recur-
rences may be time-varying, so that, there is a time-variant

issue of violation recurrences in revision histories of soft-
ware projects, which may help to prioritize violations. It is
included in our future work.

Listing 2. Violation types not seen in the selected 10
projects

1. SIC_INNER_SHOULD_BE_STATIC

2. NM_METHOD_NAMING_CONVENTION

3. SIC_INNER_SHOULD_BE_STATIC_ANON

4. NP_PARAMETER_MUST_BE_NONNULL_

BUT_MARKED_AS_NULLABLE

5. NP_NONNULL_RETURN_VIOLATION

6. UPM_UNCALLED_PRIVATE_METHOD

7. ODR_OPEN_DATABASE_RESOURCE

8. SE_NO_SERIALVERSIONID

Insight 2. Developers can write positive patches to fix
bugs existing in their projects based on the fix patterns
inferred with our method. For example, the developers of
commons-lang

26 project fixed a bug27 reported as a
DM_CONVERT_CASE violation by FindBugs by improving
the patch that was proposed using our method (cf. Fig. 20).
Our method cannot generate the patch they wanted because
there is no fix pattern that is related to adding a rule of
Locale.ROOT in our dataset, so that there might be a limi-
tation of existing patches in revision histories.

Insight 3. Developers will not accept plausible patches
that appear unnecessary even if those are likely to be useful.
For example, Fig. 21 shows a rejected patch that adds an
instanceof test to the implementation of equals

(Object obj). The developers want to accept this patch at
the first glimpse, but they reject to change the source code
after reading the context of these violations since the imple-
mentation of equals(Object obj) belongs to an inner
static class which is only used in a generic type that will not
compare against other Object types.

Insight 4. Some violations fixed based on the mined fix pat-
terns may break the backward compatibility of other

Fig. 20. Example of an improved patch in real project.

TABLE 11
Delays Until Acceptance

Delay less than 1 day 1 to 2 days 17 days

Number of Patches 46 (67%) 21 (30%) 2 (3%)

Acceptance indicates one of improved or merged patches.

TABLE 12
Verification of Accepted Patches

Verified by 1 developer 2 developers 3 developers

Number of Patches 48 19 2

TABLE 10
Results of Live Study

Project Name # Patches

pushed ignored rejected improved merged

json-simple 2 1 0 0 0
commons-io 2 0 2 0 0
commons-lang 7 5 1 1 0
commons-math 6 6 0 0 0
ant 16 2 4 1 9
cassandra 9 9 0 0 0
mahout 3 2 0 0 0
aries 5 5 0 0 0
poi 44 0 0 0 44
camel 22 0 8 0 14
Totaly 116 30 15 2 67

yOne patch of json-simple is the same as a patch of the same violation
which has been fixed by its developer in another version. One patch of mahout
is attached to its bug report system but has not yet been merged.

26. https://github.com/apache/commons-lang
27. https://garygregory.wordpress.com/2015/11/03/java-

lowercase-conversion-turkey/
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applications, leading developers to reject patches for such vio-
lations. For example, Fig. 22 shows a rejected patch of a
MS_SHOULD_BE_FINAL violation in Path.java file of the ant

project,which breaks the backward compatibility ofsystem-
Classpath in InternalAntRunner class28 of Eclipse project.

Insight 5. Some violation types have low impact. For exam-
ple, PZLA_PREFER_ZERO_LENGTH_ARRAYS refers to the
FindBugs’ rule that an array-return method should consider
returning a zero-length array rather than null. Its fix pattern is
replacing the null reference with a corresponding zero-length
array. Developers ignored or rejected patches for this type of
violations because they do have null-check to prevent these
violations. If there is no null-check for these violations, the
invocations of these methods would be identified as NP_

NULL_ON_SOME_PATH violations. Thus, PZLA_ PREFER_

ZERO_LENGTH_ARRAYSmight not be useful in practice.
Insight 6. Some fix patterns make programs fail to com-

pile. For example, the common fix pattern of RV_RETURN_
VALUE_IGNORED_BAD_PRACTICE violations is adding an
if statement to check the return boolean value of the vio-
lated source code. We note that return values of some vio-
lated source code of this violation type is not boolean

type. Copying the change behavior of the fix pattern directly
to this kind of violations will lead to compilation errors.

Insight 7. Some fix patterns make programs fail to check-
style. Fig. 23 presents an example of a patch generated by
our method for a MS_SHOULD_BE_FINAL violation in
XmlConverter.java file of camel29 project, which makes the
project fail to checkstyle.

Insight 8. Some fix patterns of some violations are contro-
versial. For example, the fix patterns of DM_NUMBER_CTOR
violations are replacing the Number constructor with static
Number valueOf method. It has been found that changing
new Integer() to Integer.valueOf() and changing
Integer.valueOf() to new Integer() were reverted
repeatedly. Some developers find that new Integer() out-
performs Integer.valueOf(), and some other develop-
ers find that Integer.valueOf() outperforms new

Integer(). Additionally, some developers report that
Double.doubleToLongBits() could be more efficient
than new Double() and Double.valueOf() when

comparing two double values with equals() method. We
infer that the DM_NUMBER_CTOR or DM_FP_NUMBER_CTOR
violations should be identified and revised based on the
specific function, otherwise, developers may be prone to
ignoring these kinds of violations.

4 DISCUSSION

4.1 Threats to Validity

Amajor threat to external validity of our study is the focus on
FindBugs as the static analysis tool, with specific violation
types and names. Fortunately, the code problems descri-
bed by FindBugs violations are similar to the violati-
ons described by other static analysis tools. For example,
NP_NULL_ON_SOME_PATH violations in FindBugs, Null

dereference violations in Facebook Infer, and Throw-

Null violations in Google ErrorProne are about the same
issue: A NULL pointer is dereferenced and will lead to a
NullPointerException when the code is executed. With the
fix pattern of NP_NULL_ON_SOME_PATH of FindBugs mined
in this study, we fixed 9 out of 10 different cases (each is from
a distinct project in our subjects) of Null dereference vio-
lations detected by Facebook Infer and 8 out of 10 different
cases of ThrowNull violations detected by Google Error-
Prone, respectively. It shows the potential generalizability of
the inferred fix patterns. We acknowledge, however, that
there are some differences between FindBugs violations
and other static analysis violations. Another threat to exter-
nal validity of our study is that the fix patterns of violations
are mined from open-source projects. Our findings might
not applicable to industry projects that could have specific
policies related to code quality.

Threats to internal validity include the limitations of the
underlying tools used in this study (i.e., FindBugs and
GumTree). GumTree may produce unfeasible edit scripts.
To reduce this threat, we have added extra labels into Gum-

Tree. FindBugs may produce some violations with inac-
curate positions. To reduce this threat, we re-locate and re-
visit the violated source code with the bug descriptions of
some violation types by FindBugs. FindBugs may yield
high false positives. In order to reduce this threat, we focus
on the common fixed violations in this study since common
fixed violations are really concerned by developers. If the
common fixed violations were addressed by common fix
patterns, the common fixed violations are highly possible to
be true positives and the common fix patterns are highly
possible to be effective resolutions. These threats could be
further reduced by developing more advanced tools.

Threats to internal validity also involve limitations in our
method. Violation tracking may produce false positive fixed
violations. We combine the commit DiffEntry and diffs
parsed by GumTree to reduce this threat. Irrelevant code
contexts can interfere with patterns mining. For example,
one statement contains complex expressions, which may
lead to a high number of irrelevant tokens. If this kind of
violations were not filtered out in this study, it would

Fig. 22. Example of a rejected patch breaking the backward
compatibility.

Fig. 23. Example of a patch making program fail to checkstyle.
Fig. 21. Example of a rejected patch in real projects.

28. https://github.com/eclipse/eclipse.platform/blob/
R4_6_maintenance/ant/org.eclipse.ant.core/src_ant/org/
eclipse/ant/internal/core/ant/InternalAntRunner.java#L1484

29. https://github.com/apache/camel
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increase the interference of noise. To reduce this validity,
our study should be replicated in future work by extracting
and analyzing the key violated source code with relevant
code contexts identified using system dependency graphs.
In this study, we also find that some violations are replaced
by method invocations which encapsulate the detailed
source code changes of fixing the corresponding violations.
The method we proposed extracts source code changes
from source code changing positions of violations. It is chal-
lenging to extract source code changes from these kinds of
fixed violations. In order to reduce this validity, we are
planning to integrate static analysis technique into our
method to get more detailed source code changes.

4.2 Insights on Unfixed Violations

Given the high proportion of violations that were found to
remain unfixed in software projects, we investigate the
potential reasons for this situation. By comparing, in Section
3.3, the code patterns of unfixed violations against those of
fixed patterns, we note that they are commonly shared, sug-
gesting that the reasons are not mainly due to the violation
code characteristics. Instead, we can enumerate other
implicit reasons based on the observation of statistical data
as well as the comments received during our live study to
fix violations in ten open source projects.

� Actually, many developers do not use FindBugs as
part of their development tool chain. For example,
we found that only 36 percent of projects in our
study include a commit mentioning FindBugs.
Also, interestingly, in the cases of projects where we
found that only 2 percent (1,944/88,927) of fixed
FindBugs violations explicitly refer to the Find-

Bugs tool in commit messages.
� As a static analysis tool, FindBugs yields a significant

number of false positives: i.e., violations that develop-
ers do not consider as being true violations. We
indeed highlighted some code patterns of detected
violations that they are inconsistent with the descrip-
tions provided by FindBugs (cf. Section 3.5).

� Our interaction with developers helped us confirm
that developers do not consider most FindBugs vio-
lations as being severe enough to deserve attention
in their development process.

� Some violations identified by FindBugs might be
controversial because we find that some fix patterns
of some violations are controversial (cf. Insight 8 in
Section 3.7.3).

� Finally, with our live study, we note that some devel-
opers may be willing to fix violations if they had in
hand some fix patterns. Unfortunately, FindBugs
only reports the violations, and does not provide in
many cases any hint on how to deal with them. Our
work is towards filling this gap systematically based
on harvested knowledge from developer fixes.

5 RELATED WORK

5.1 Static Analysis

Classification of Actionable and Unactionable Violations: Static
analysis violations are studied and investigated from differ-
ent aspects. Several studies attempted to classify actionable
(likely to be true positive) and unactionable (false positive)

violations by using machine learning techniques [13], [27],
[29]. Classifying new and recurring alarms is necessary to
prune identical alarms between subsequent releases. Hash
code matching [25] and coding pattern analysis [12] can be
used for identifying recurring violations. Model checking
techniques [62], [63] and constraint solvers [64], [65] can
also verify true violations and prune false positive. As dis-
cussed in Section 3.5, trivial violations reported by Find-
Bugs can be treated as false positives by developers, but
they cannot be identified by previous work since they are
negligible issues and too trivial to be addressed by develop-
ers. Investigating the violations recurrently addressed by
developers like this study could reduce this threat to iden-
tify true positive violations.

Violation Prioritization:Violation prioritization can provide
a ranked list so that developers focus on important ones first.
Z-ranking [66] prioritizes violations based on observations of
real error trends. Jung et al. leveraged Bayesian statistics to
rank violations [67]. History-based prioritization [68], [69],
[70] utilizes history of program changes to prioritize viola-
tions. In addition, several studies attempted to leverage user
feedback to rank violations [22], [26], [71]. However, these
works did not investigate violations with the big number of
violations as our work, from multiple aspects as we done.
Thus, our work can provide more reliable insights for viola-
tion ranking than theseworks.

5.2 Change Pattern Mining

Empirical Studies on Change Patterns: Common change pat-
terns are useful for various purposes. Pan et al. [58]
explored common bug fix patterns in Java programs to
understand how developers change programs to fix a bug.
Their fix patterns are, however, in a high-level schema (e.g.,
“If-related: Addition of Post-condition Check (IF-APTC)”).
Based on the insight, PAR [21] leveraged common pre-
defined fix patterns for automated program repair, that
only contain six fix patterns which can only be used to fix a
small number of bugs. Martinez and Monperrus further
investigated repair models that can be utilized in program
fixing while Zhong and Su [72] conducted a large-scale
study on bug fixing changes in open source projects. Tan
et al. [73] analyzed anti-patterns that may interfere with the
process of automated program repair. However, all of them
studied code changes at the statement level, which is not as
fine-grained as our work that extracts fine-grained code
changes with an extended version of GumTree [16].

Pattern Mining for Code Change: SYDIT [74] and Lase [75]
generate code changes to other code snippets with the
extracted edit scripts from examples in the same applica-
tion. RASE [76] focuses on refactoring code clones with Lase
edit scripts [75]. FixMeUp [77] extracts and applies access
control templates to protect sensitive operations. Their
objectives are not to address issues caused by faulty code in
program, such as the static analysis bugs studied in this
study. REFAZER implements an algorithm for learning syn-
tactic program transformations for C# programs from exam-
ples [78] to correct defects in student submissions, which
however are mostly useless across assignments [79] and are
not really defects in the wild as the violations in our study.
Genesis [79] heuristically infers application-independent
code transform patterns from multiple applications to fix
bugs, but its code transform patterns are tightly coupled
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with the nature and syntax of three kinds of bugs (i.e., null
pointer, out of bounds, and class cast defects). Koyuncu
et al. [80] have generalized this approach with FixMiner to
mining fix patterns for all types of bugs given a large data-
set. Our work tries to mine the common fix patterns for gen-
eral static analysis violations which are not application-
independent. Closely related to our work is the concurrent
work of Reudismam et al. [81] who try to learn quick fixes
by mining code changes to fix PMD violations [5]. Their
approach aims at learning code change templates to be sys-
tematically applied to refactor code. Our approach can be
used for a similar scenario, and scales to a huge variety of
violation types.

5.3 Bug Datasets

Several datasets of real-world bugs have been proposed in
the literature to evaluate approaches in software testing,
software repair, and defect prediction approaches. Do
et al. [82] have thus contributed to testing techniques with a
controlled experimentation platform. The associated dataset
was added to the SIR database, which provides a widely-
used test bed for debugging and test suite optimization. Lu
et al. [83] and Cifuentes et al. [84] have respectively pro-
posed BugBench and BegBunch as benchmarks for bug
detection tools. Similarly, Dallmeier et al. [85] have pro-
posed iBugs, a benchmark for bug localization. Similarly to
our process, their benchmark was obtained by extracting
historical bug data. Bug data can also be found in the
PROMISE repository [86] which includes a large variety of
datasets for software engineering research. Le Goues
et al. [87] have designed the GenProg benchmark with C
bugs. Just et al. [20] have proposed Defects4J to evaluate
software testing and repair approaches. Their dataset was
collected from the recent history of five widely-used Java
bugs, for which they could include the associated test suites.
To ensure the reliability of our experiments, we also collect
subjects to identify violations and corresponding patches
from real-world projects. The existing bug datasets focus on
the bugs that make programs fail to pass some test case(s),
but our data is about static analysis violations which may
not fail to pass test cases.

5.4 Program Repair

Recent studies of program repair have presented several
achievements. There are mainly two lines of research: (1)
fully automated repair and (2) patch hint suggestion. The
former focuses on automatically generating patches that can
be integrated into a program without human intervention.
The patch generation process often includes patch verifica-
tion to figure out whether the patch does not break the origi-
nal functionality when it is applied to the program. The
verification is often achieved by running a given test suite.
Automatize violation repair is included in our future work.
The latter techniques suggest code fragments that can help
create a patch rather than generating a patch ready to inte-
grate. Developers may use the suggestions to write patches
and verify them manually, that is similar to the patch gener-
ation of our work.

Fully Automated Repair:Automated program repair is pio-
neered by GenProg [88], [89]. This approach leverages
genetic programming to create a patch for a given buggy

program. It is followed by an acceptability study [90] and
systematic evaluation [91]. Regarding the acceptability
issue, Kim et al. [21] advocated GenProg may generate non-
sensical patches and proposed PAR to deal with the issue.
PAR leverages human-written patches to define fix tem-
plates and can generate more acceptable patches. HDRe-
pair [61] leverages bug fixing history of many projects to
provide better patch candidates to the random search pro-
cess. Recently, LSRrepair [92] proposes a live search
approach to the ingredients of automated repair using code
search techniques. While GenProg relies on randomness,
utilizing program synthesis techniques [93], [94], [95] can
directly generate patches even though they are limited to a
certain subset of bugs. Other notable approaches include
contract-based fixing [96], program repair based on behav-
ior models [97], and conditional statement repair [98]. This
study does not focus on the fully automated program repair
but the automated fix pattern mining for violations.

Patch Hint Suggestion: Patch suggestion studies explored
diverse dimensions. MintHint [99] generates repair hints
based on statistical analysis. Tao et al. [100] investigated
how automatically generated patches can be used as debug-
ging aids. Bissyand�e suggests patches for bug reports based
on the history of patches [101]. Caramel [102] focuses on
potential performance defects and suggests specific types of
patches to fix those defects. Our study is closely related to
patch hint suggestion since we can suggest top-10 most sim-
ilar fix patterns for targeting violations. The difference is
that fix patterns in this work are mined from developers’
patch submissions of static analysis violations.

Empirical Studies on Program Repair: Many studies have
explored properties of program repair. Monperrus [103]
criticized issues of patch generation learned from human-
written patches [21]. Barr et al. discussed the plastic surgery
hypothesis [104] that theoretically illustrates graftibility of
bugs from a given program. Long and Rinard analyzed the
search space issues for population-based patch genera-
tion [105]. Smith et al. presented an argument of overfitting
issues of program repair techniques [106]. Koyuncu et al. [8]
compared the impact of different patch generation techni-
ques in Linux kernel development. Benchmarks for pro-
gram repair are proposed for different programming
languages [20], [87]. Based on a benchmark, a large-scale
replication study was conducted [59]. More recently, Liu
et al. [107] investigated the distribution of code entities
impacted by bug fixes with fine-grained granularity, and
found that some static analysis tools (e.g., FindBugs [14]
and PMD [5]) are involved in some bug fixes.

6 CONCLUSION

In this study, we investigate recurrences of violations as
well as their fixing changes, collected from open source Java
projects. The yielded findings provide a number of insights
into prioritization of violations for developers, as well as for
researchers to improve violation reporting.

In this paper, we propose an approach to mine code pat-
terns and fix patterns of static analysis violations by leverag-
ing CNNs and X-means. The identified fix patterns are
evaluated through three experiments. They are first applied
to fixing many unfixed violations in our subjects. Second,
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we manage to get 67 of 116 generated patches accepted by
the developer community and eventually merged into 10
open source Java projects. Third, interestingly, the mined
fix patterns were effective for addressing 4 real bugs in the
Defects4J benchmark.

As further work, we plan to combine fix pattern mining
with automated program repair techniques to generate vio-
lation fixes more automatically. In the live study, we find
that some common violations never occurred in latest ver-
sions of those projects. We postulate that violation recur-
rences may be time-varying. Our future work also includes
studies on the time-variant issue of violation recurrences to
further figure out the historic changes of fixed violations
and the latest trend of violations, which may help new
directions of violation prioritization.
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