
96

Reliable Fix Patterns Inferred from Static Checkers for

Automated Program Repair

KUI LIU and JINGTANG ZHANG, Nanjing University of Aeronautics and Astronautics, China

LI LI, School of Software, Beihang University, China

ANIL KOYUNCU, Sabanci University, Turkey

DONGSUN KIM, Kyungpook National University, South Korea

CHUNPENG GE, School of Software, Shandong University, China

ZHE LIU, Nanjing University of Aeronautics and Astronautics, China

JACQUES KLEIN and TEGAWENDÉ F. BISSYANDÉ, University of Luxembourg, Luxembourg

Fix pattern-based patch generation is a promising direction in automated program repair (APR). Notably, it

has been demonstrated to produce more acceptable and correct patches than the patches obtained with mu-

tation operators through genetic programming. The performance of pattern-based APR systems, however,

depends on the fix ingredients mined from fix changes in development histories. Unfortunately, collecting a

reliable set of bug fixes in repositories can be challenging. In this article, we propose investigating the possibil-

ity in an APR scenario of leveraging fix patterns inferred from code changes that address violations detected

by static analysis tools. To that end, we build a fix pattern-based APR tool, Avatar, which exploits fix patterns

of static analysis violations as ingredients for the patch generation of repairing semantic bugs. Evaluated on

four benchmarks (i.e., Defects4J, Bugs.jar, BEARS, and QuixBugs), Avatar presents the potential feasibility

of fixing semantic bugs with the fix patterns inferred from the patches for fixing static analysis violations and

can correctly fix 26 semantic bugs when Avatar is implemented with the normal program repair pipeline.

We also find that Avatar achieves performance metrics that are comparable to that of the closely related ap-

proaches in the literature. Compared with CoCoNut, Avatar can fix 18 new bugs in Defects4J and 3 new bugs

in QuixBugs. When compared with HDRepair, JAID, and SketchFix, Avatar can newly fix 14 Defects4J bugs.

In terms of the number of correctly fixed bugs, Avatar is also comparable to the program repair tools with

the normal fault localization setting and presents better performance than most program repair tools. These

results imply that Avatar is complementary to current program repair approaches. We further uncover that

This work was supported by funding from the National Key R&D Program of China (2020YFB1005500), the National Natural

Science Foundation of China (Grant No. 62172214), the Natural Science Foundation of Jiangsu Province, China (Grant

No. BK20210279), the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced

Computing (No. 2020A06), the European Research Council (ERC) under the European Union’s Horizon 2020 research and

innovation program (grant agreement No. 949014), and the National Research Foundation of Korea (NRF) grant funded by

the Korea government (MSIT) (No. 2021R1A5A1021944 and 2021R1I1A3048013), Additionally, the research was partially

supported by Kyungpook National University Research Fund, 2020.

Authors’ addresses: K. Liu, J. Zhang, and Z. Liu (corresponding author), Nanjing University of Aeronautics and Astronau-

tics, Nanjing, China; emails: {kui.liu, jingtangzhang, zhe.liu}@nuaa.edu.cn; L. Li (corresponding author), School of Software,

Beihang University, Beijing, China; email: lilicoding@ieee.org; A. Koyuncu, Sabanci University, Istanbul, Turkey; email:

anil.koyuncu@sabanciuniv.edu; D. Kim, Kyungpook National University, Daegu, South Korea; email: darkrsw@knu.ac.kr;

C. Ge, School of Software, Shandong University, Jinan, China; email: gecp@nuaa.edu.cn; J. Klein and T. F. Bissyandé, Uni-

versity of Luxembourg, Luxembourg; emails: {jacques.klein, tegawende.bissyande}@uni.lu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/05-ART96 $15.00

https://doi.org/10.1145/3579637

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

https://orcid.org/0000-0003-0145-615X
https://orcid.org/0000-0002-1703-3795
https://orcid.org/0000-0003-2990-1614
https://orcid.org/0000-0001-6975-6752
https://orcid.org/0000-0003-0272-6860
https://orcid.org/0000-0003-2629-7220
https://orcid.org/0000-0001-9116-2897
https://orcid.org/0000-0003-4052-475X
https://orcid.org/0000-0001-7270-9869
mailto:permissions@acm.org
https://doi.org/10.1145/3579637
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579637&domain=pdf&date_stamp=2023-05-26

96:2 K. Liu et al.

Avatar can present different bug-fixing performances when it is configured with different fault localization

tools, and the stack trace information from the failed executions of test cases can be exploited to improve

the bug-fixing performance of Avatar by fixing more bugs with fewer generated patch candidates. Overall,

our study highlights the relevance of static bug-finding tools as indirect contributors of fix ingredients for

addressing code defects identified with functional test cases (i.e., dynamic information).

CCS Concepts: • Software and its engineering→ Software verification and validation; Software defect

analysis; Software testing and debugging;

Additional Key Words and Phrases: Automated program repair, static analysis, fix pattern

ACM Reference format:

Kui Liu, Jingtang Zhang, Li Li, Anil Koyuncu, Dongsun Kim, Chunpeng Ge, Zhe Liu, Jacques Klein,

and Tegawendé F. Bissyandé. 2023. Reliable Fix Patterns Inferred from Static Checkers for Automated Pro-

gram Repair. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 96 (May 2023), 38 pages.

https://doi.org/10.1145/3579637

1 INTRODUCTION

The momentum of automated program repair (APR) keeps activating the development of var-
ious approaches in the literature [49]. In the software engineering community, the focus is mainly
placed on fixing semantic bugs that make the program behavior deviate from developers’ inten-
tions [46, 50]. Such bugs could be detected by analyzing the execution traces of failing and passed
tests. The research community has developed generate-and-validate repair pipelines [4, 16, 23,
25, 31, 62, 63, 68] where program test cases are leveraged not only for localizing the bug loca-
tions [1, 29, 52, 72] but also as the oracle for validating the generated patches [22, 37, 53, 67].

Unfortunately, given that test suites can be incomplete and one-sided, typical APR systems are
prone to generate nonsensical patches that might violate the intended program behavior or simply
introduce other defects that are not covered by test suites [18]. Smith et al. [58] have thoroughly
investigated this issue and found that overfitted patches are common: These patches can make the
patched program pass all the available test cases, but they are not correct. Consequently, those
incorrect patches might not be accepted by developers for further maintenance.

To address the problem of patch correctness in APR, our work focuses on how to generate better
patches rather than adding more test cases. In the community, two research directions are being
investigated. The first direction attempts to develop techniques for automatically augmenting the
test suites [74]. The second one focuses on improving the patch generation process to reduce the
probability of generating nonsensical patches [16, 21, 68].

Mining fix templates from common patches in the wild is a promising approach to achieve patch
correctness. As first introduced by Kim et al. [18], patch correctness can be improved by leveraging
fix templates learned from human-written patches. In their work, the template construction was
performed manually, which is a limiting factor and is further error-prone [48]. Since then, several
approaches have been developed towards automating the inference of fix patterns from fix changes
in developer code bases [16, 28, 35, 44, 61]. For example, Liu et al. [27] and Rolim et al. [54] proposed
mining fix patterns from the patches of fixing static analysis violations. They first leveraged the
static analysis tools to analyze each commit version of a program and compared the differences
of detected static violations between two connected commit versions to identify which violations
are fixed. The related patches for the fixed static violations are identified with the sophisticated
algorithm (e.g., Avgustinov et al. [2]) and are further parsed into code change diffs1 at the abstract

1A “code change diff” consists of two code snapshots. One snapshot represents the code fragment that will be affected by

a code change, while the other one represents the code fragment after it has been affected by the code change.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

https://doi.org/10.1145/3579637

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:3

syntax tree level with GumTree [7], a code change distilling tool. Such diffs are then used to infer
and mine the corresponding fix patterns with deep learning techniques. Note that a key challenging
step in the inference of patterns, however, is the identification and collection of a substantial set
of relevant bug fix changes to construct the learning dataset. Patterns must further be precise and
diverse to guarantee repair effectiveness [31].

There have been approaches to mining fix patterns and exploring the challenges in achieving
the diversity and reliability of fix ingredients, but those approaches still have limitations. Long
et al. [35] have relied on only three simple bug types, while Koyuncu et al. [21] have focused
on bug linking between bug tracking systems and source code management systems to identify
possible bug fixes. Unfortunately, the former approach cannot find patterns to address a variety of
bugs, while the latter may include patterns that are irrelevant to bug fixes, since developer changes
are not atomic [12]. It is thus challenging to extract useful and reliable patterns focusing on fix
changes.

Our work proposes a new direction for pattern-based APR to overcome the limitations in finding
reliable and diverse fix ingredients. Concretely, we focus on fix patterns inferred from developer
patches of fixing static analysis violations that are detected by static analysis tools and are referred
to as warnings, alerts, or alarms (cf., Section 2.2). The advantages of this approach are: (1) the
availability of toolsets for assessing whether a code change is actually a fix [2, 11] and (2) the
ability to further pre-categorize the changes into groups targeting specific violations, leading to
consistent fix patterns [27, 54].

Although static analysis violations (e.g., FindBugs2 warnings) may appear irrelevant to the prob-
lem of semantic bug fixing, there are two findings in the literature, which can support our intuition
of leveraging fix patterns from static analysis violation patches to address semantic bugs:

• Locations of semantic bugs (unveiled through dynamic execution of test cases) can sometimes

be detected by static analysis tools. In a recent study, Habib et al. [10], have found that some
bugs in the Defects4J dataset can be identified by static analysis tools: SpotBugs,3 Infer,4 and
ErrorProne.5 Other studies [8, 47, 73] have also suggested that violations reported by static
analysis tools might be smells of more severe defects in software programs.
• Violation fix patterns have been used to successfully fix bugs in the wild. In preliminary live

studies, Liu et al. [27] and Rolim et al. [54] have shown that they can systematically fix
statically detected bugs by using some of their previously learned fix patterns. They further
showed that project developers are eager to integrate the systematization of such fixes based
on the mined patterns.

This article makes the following contributions:

(1) We propose Avatar (static Analysis ViolAtion fix paTtern-based Automated program
Repair), a fix pattern-based approach to automated program repair. Our approach
differs from related work in the dataset of developer patches that is leveraged to extract fix

2http://findbugs.sourceforge.net.
3https://spotbugs.github.io.
4https://fbinfer.com.
5https://errorprone.info.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

http://findbugs.sourceforge.net
https://spotbugs.github.io
https://fbinfer.com
https://errorprone.info

96:4 K. Liu et al.

ingredients. We build on patterns extracted from patches that have been verified (with bug
detection tools) as true bug fix patches. Given the redundancy of bug types detected by static
analysis tools, the associated fixes are intuitively more similar, leading to the inference of
reliable common fix patterns. Avatar implements 28 fix patterns for 18 static violation types
and is publicly available at: https://github.com/mrdrivingduck/AVATAR.

(2) We explore the feasibility of repairing semantic bugs with the fix patterns of static

analysis violations. We first apply Avatar configured with the perfect fault localization to
semantic bugs in four Java program defect benchmarks to assess how many semantic bugs
can be fixed with fix patterns extracted from common code changes fixing static analysis
violations. Eventually, Avatar generates correct patches for 51 bugs, 11 bugs, 2 bugs, and
8 bugs in Defects4J, Bugs.jar, BEARS, and QuixBugs, respectively. It indicates that the fix
patterns of static analysis violations can be used to fix semantic bugs. Then, we investigate
how effectively Avatar can fix semantic bugs that appear to be localizable by static analysis
tools. The experiments show that Avatar is capable of correctly fixing 7 bugs that can be
detected by static analysis tools. It presents the possibility of integrating Avatar with static
analysis tools to solve program bugs.

(3) We systematically investigate why the fix patterns of static analysis violations can

be used to fix semantic bugs. We dissect the bugs fixed by Avatar into eight categories
in terms of the related violation type and analyze the relationship between the behavior of
the fix pattern and the issue of each bug. On the one hand, we observe that some semantic
bugs are indeed caused by the same problem as the static violations. On the other hand, the
fix patterns for static violations can be used to resolve the semantic bugs of which issues are
different from the static violations, since they are fixed in the same way of changing code.
Additionally, Avatar is capable of correctly fixing semantic bugs in a way that is different
from but semantically similar to the code-modifying method provided by developers in the
ground-truth patches.

(4) We compare the bug-fixing performance of Avatar against the program repair

tools under different fault localization settings. We compare our approach with the
state-of-the-art based on different evaluation aspects, including the number of fixed bugs,
the exclusivity of fixed bugs, patch correctness, and so on. When configured with the perfect
fault localization, Avatar can generate correct patches for 72 bugs, which outperforms the
state-of-the-art deep learning-based program repair tool CoCoNut [39]. When the buggy
method can be correctly localized, Avatar can generate correct patches for 14 bugs that
HDRepair, JAID, and SketchFix cannot fix. In the normal APR scenario, Avatar can fix 82
bugs in Defects4J; 26 of them are fixed with correct patches, which is comparable to the
state-of-the-art program repair tools.

(5) We assess to what extent the bug-fixing performance of Avatar could be biased by

the different fault localization techniques. We investigate the bug-fixing performance
of Avatar in terms of the number of fixed bugs and the efficiency in terms of counting
the number of generated patch candidates. Avatar configured with GZoltar-0.1.1 setting
fixes more bugs than it configured with GZoltar-1.7.2, but the former will generate more
nonsensical patches than the latter; we conclude that a tradeoff between the number of
fixed bugs and the efficiency of generating patch candidates should be well maintained when
selecting the adequate fault localization for Avatar, since different fault localization tools
will report different suspicious statements to expose the bug positions.

(6) We investigate the possibility of using the stack trace information to improve the

bug-fixing performance of Avatar. When using JUnit, stack traces are available for
the ordinary failing-executed test case(s), as developers often check test verdict by using

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

https://github.com/mrdrivingduck/AVATAR

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:5

assertions (e.g., assertTrue()) that produce errors with stack traces if the test condition
is not satisfied. Our experimental results uncover that the information in stack traces pro-
duced by bug-triggering test cases can be used to improve the bug-fixing performance of
Avatar on fixing more bugs with less nonsensical patches.

2 BACKGROUND

In this section, we provide the background information on the general pattern-based APR as well
as on the pattern inference from the static analysis violation data.

2.1 Automated Program Repair with Fix Patterns

Pattern-based APR has been widely explored in the literature [18, 24, 29, 31, 35, 38, 56, 60]. The basic
idea is to represent common code changes into a pattern (interchangeably referred to as a template)
that can be applied to faulty code (i.e., patching). The fixing process consists of leveraging context
information of faulty code (e.g., abstract syntax tree (AST) nodes) to match context constraints
defined in a given fix pattern. For example, the fix template “Method Replacer” provided in PAR [18]
is presented as:

obj.method1(param)→ obj.method2(param)

where the faulty method call method1 is replaced by another method call method2 with com-
patible parameters and return type. A method call is the context information for this template to
match the buggy code fragment. Thus, this template can be applied to any faulty statement that
includes at least one method call expression. The template further guides the patch candidate gen-
eration where changes are proposed to replace the potentially faulty method call with another
method call.

Mining fix patterns has some intrinsic issues. The first issue relates to the variety of patterns
that must be identified to support the fixing of different bug types. There are three strategies in
fix pattern mining: (1) manual design, (2) automatic mining, and (3) code change statistics. The
first strategy can effectively create precise fix patterns. Unfortunately, it requires human effort,
which can be prohibitive [18]. The second one infers common modification rules [35] or searches
for the most redundant sub-patch instance [16, 21]. The last one selects the top-n most frequent
code change instructions (at the abstract syntax tree level) as fix patterns [16, 24, 63], but it relies
on the quality of bug-fixing commits collected from the maintaining history of programs. While
the latter two strategies can substantially increase the number of fix patterns, it is subject to noisy
input data due to tangled changes [12], which make the inferred patterns less relevant. The second
issue relates to the granularity (i.e., the degree of abstraction). Coarse-grained and monolithic
patterns [51] can cover many types of bugs but they may not be actionable in APR. A fine-grained
or micro pattern [35] can be readily actionable but cannot cover many defects.

2.2 Static Analysis Violations

Static analysis tools help developers check for common programming errors in software systems.
The targeted errors include syntactic defects, security vulnerabilities, performance issues, and bad
programming practices. These tools are classified as “static,” because they do not require dynamic
execution traces to find bugs. Instead, they are directly applied to source code or bytecode. In
contrast to dynamic analysis tools, which must run test cases, static tools can cover more paths,
although it makes over-approximations that make them prone to false positives.

Many software projects rigorously integrate static analysis tools into their development cycles.
The Linux kernel development project is such an example project where developers systematically
run static analyzers against their code before pushing it to maintainers repositories [20]. More

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:6 K. Liu et al.

Fig. 1. Example patch excerpted from Reference [27] for fixing a violation detected by FindBugs.

generally, FindBugs, PMD,6 and Google Error-Prone are often used in Java projects, while C/C++
projects tend to adopt Splint,7 cppcheck,8 and Clang Static Analyzer.9

Static analysis tools raise warnings, which are also referred to as alerts, alarms, or violations.
Given that these warnings are due to the detection of code fragments that do not comply with
some analysis rules, in the remainder of this article, we refer to the issues reported by static analysis
tools as violations. Figure 1 excerpted from Reference [27] shows an example patch for a violation
detected by FindBugs. This violation (the code starting with “-”) is reported, because the equals
method should work for all object types (i.e., Object): In this case, the method code violates the
rule, since it assumes a specific type (i.e., ModuleWrapper).

Note that not all violations are accepted by developers as actual defects. Since static analysis
tools use limited information, detected violations could be correct code (i.e., false positive) or the
warning may be irrelevant (e.g., cannot occur at runtime or not a serious issue). In the literature,
many studies assume that a violation can be classified as actionable if it is discarded after a de-
veloper changed the location where the violation is detected. The violation in Figure 1 is fixed by
adding an instanceof check (cf., the code starting with “+” in the patch diff); this violation can
thus be regarded as actionable, since this violation is gone after fixing its source code.

Intuition. Mining patterns from developer patches that fix static analysis violations may help
overcome the issues of fix pattern mining described in Section 2.1. First, since static analysis tools
specify the type of each violation (e.g., bug descriptions10 of FindBugs), each bug instance is already
classified as long as it is fixed by code changes. Thus, we can reduce the manual effort to collect and
classify bugs and their corresponding patches for fix pattern mining. Second, it is able to mitigate
the issue of tangled changes [12], because violation-fixing changes can be localized and isolated by
static analysis tools [2]. In addition, the granularity of fix patterns can be appropriately adjusted
for each violation type, since static analysis tools often provide information on the scope of each
violation instance.

3 MINING FIX PATTERNS FOR STATIC VIOLATIONS

Mining fix patterns for static analysis violations has been explored in the literature [27, 54]. The
general objective so far, however, is to learn quick fixes for speeding maintenance tasks and to-
wards understanding which violations are prioritized by developers for fixing. To the best of our
knowledge, our work is the first reported attempt to investigate fix patterns of static analysis vi-
olations in the context of automated program repair (where patches are generated and validated
systematically with developer test cases).

6https://pmd.github.io.
7https://www.splint.org.
8http://cppcheck.sourceforge.net.
9https://clang-analyzer.llvm.org.
10http://findbugs.sourceforge.net/bugDescriptions.html.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

https://pmd.github.io
https://www.splint.org
http://cppcheck.sourceforge.net
https://clang-analyzer.llvm.org
http://findbugs.sourceforge.net/bugDescriptions.html

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:7

Fig. 2. Summarized steps of static analysis violation fix pattern mining.

There have been two recent studies of mining fix patterns addressing static analysis violations.
Our previous study [27] focuses on identifying fix patterns for FindBugs violations [13], while
Rolim et al. [54] consider PMD violations.11 Both approaches, which were developed concurrently,
leverage a similar methodology in the inference process. We summarize below the process of fix
pattern mining of static analysis violations into three basic steps (as shown in Figure 2): data
collection, data preprocessing, and fix pattern mining. Implementation details are strictly based
on the approach of our previous study [27].

3.1 Data Collection

The objective of this step is to collect patches that are relevant to static analysis violations that are
detected by the static analysis tool, FindBugs [13]. This step is done in the wild based on the commit
history of open-source projects by implementing a strict strategy to limit the dataset of changes
to those that are relevant in the context of static analysis violations. To that end, it is necessary
to systematically run static bug detection tools for each and every revision of the programs. This
process can be resource-intensive; for example, FindBugs takes as input compiled versions of Java
classes, requiring to build thousands of project revisions.

This step collects code changes (i.e., patches) only if they are identified as violation-fixing
changes. For a given violation instance, we can assume that a change commit is a (candidate)
fix for the instance when it disappears after the commit; i.e., the violation instance is identified in
a revision of a program but is no longer identified in the consecutive revision. Then, it is neces-
sary to figure out whether the change actually fixed the violation instance or it just disappears by
coincidence. If the affected code lines are located within the code change diff of the commit, then
it is regarded as an actual fix for the given violation instance. Otherwise, the violation instance
might be removed just by deleting a method, class, or even a file. Eventually, all code change diffs
associated with the identified fixed violation instances are collected to form the input data for fix
pattern mining. We refer the reader to more details in Reference [27].

3.2 Data Preprocessing

Once violation patches are collected, they are processed to extract concrete change actions.
Patches submitted to program repositories are presented in the form of line-based GNU diffs,
where changes are reported in a text-based format of edit script. Given that, in modern program-
ming languages, such as Java, source code lines do not represent a semantic entity of a code entity
(e.g., a statement may span across several lines), it is challenging to directly mine fix patterns
from GNU diffs.

Pattern-mining studies leverage edit scripts of program Abstract Syntax Trees (ASTs). Con-
cretely, the buggy version (i.e., program revision file where the violation can be found) and the
fixed version (i.e., consecutive program revision file where the violation does not appear) are given
as inputs to the GumTree [7], an AST-based code differencing tool, to produce the relevant AST

11https://pmdapplied.thomasleecopeland.com.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

https://pmdapplied.thomasleecopeland.com

96:8 K. Liu et al.

Fig. 3. Patch of the bug Closure-3112 in Defects4J.

Fig. 4. AST edit scripts produced by GumTree for the patch in Figure 3.

edit script. This edit script describes the repair actions that are implemented in the patch in a
fine-grained manner. Figure 3 provides an example GNU Diff for a bug fix patch, and Figure 4
illustrates the associated AST edit scripts.

3.3 Fix Pattern Mining

Given a set of edit scripts, the objective of the pattern mining step is to group “similar” scripts
to infer a common subset of edit actions, i.e., a consistent pattern across the group. To that end,
Rolim et al. [54] rely on the greedy algorithm to compute the distance among edit scripts. Edit
scripts with low distances among them are grouped together. Our previous study [27], however,
leverages a deep representation learning framework (namely, CNNs [45]) to learn features of edit
scripts, which are then used to find clusters of similar edit scripts. Clustering is performed based
on the X-means algorithm. Finally, the largest common subset of edit actions among all edit scripts
in a cluster is considered as a pattern.

Mined fix patterns with this approach have already been proven useful by the authors. For exam-
ple, our previous study [27] and Rolim’s work [54] conducted live studies by making pull requests
to projects in the wild: The pull requests contained change details of a patch that is generated
based on the inferred fix patterns to fix static analysis violations in developer code. Developers ac-
cepted to merge 67 out of 116 patches generated for FindBugs violations in our previous study [27].
Similarly, 6 out of 16 pull requests by Rolim et al. [54] have been merged by developers in the wild.
Such promising results demonstrated the possibility to automatically fix bugs that are addressed
by static bug detection tools.

4 OUR APPROACH

As shown in Figure 5, Avatar consists of four major steps for automated program repair: fault
localization, fix pattern matching, patch generation, and patch validation. In this section, we detail
the objective and design of each step and provide concrete information on implementation.

4.1 Fault Localization

We rely on the GZoltar13 [3] framework to automate the execution of test cases for each program. In
the framework, we leverage the Ochiai [1] ranking metric to actually compute the suspiciousness

12http://program-repair.org/defects4j-dissection/#!/bug/Closure/31.
13http://www.gzoltar.com.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

http://program-repair.org/defects4j-dissection/#!/bug/Closure/31
http://www.gzoltar.com

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:9

Fig. 5. Overview bug-fixing process with Avatar.

Table 1. Statistics on Fix Patterns of Static Analysis Violations

Projects # violation fix patches # violation types # fix patterns

Liu et al. [27] 730 88,927 111 174

Rolim et al. [54] 9 288,899 9 9

scores of statements that are likely to be the faulty code locations. This ranking metric has been
demonstrated in several empirical studies [52, 59, 65, 71] to be effective for localizing faults in
object-oriented programs. The GZoltar framework for fault localization is also widely used in
the literature of APR [16, 21, 31, 32, 42, 63, 66, 68, 70], allowing a fair assessment for Avatar’s
performance against the state-of-the-art APR tools.

4.2 Fix Pattern Matching

In the execution of the repair pipeline, once fault localization produces a list of suspicious code
locations, Avatar iteratively attempts to match each of these locations with a given pattern from
the database of fix patterns. As illustrated in Algorithm 1, each suspicious statement is parsed in
terms of AST to extract its context that is used to select the adequate fix pattern. With the selected
fix pattern, if a valid patch that can make the patched program pass all tests [34] is generated by
Avatar for the suspicious statement, Avatar will be terminated (cf., lines 7 and 9). Otherwise,
Avatar keeps matching adequate fix patterns for other suspicious statements (cf., line 15) until
a valid patch is generated or all suspicious statements are trialed. To cease the process of patch
generation when a valid patch cannot be generated, in case of the endless process of fixing bugs,
Avatar will be stopped when the quantity of generated patches exceeds the maximum patch gen-
eration number of Avatar for one program (i.e., 5,000 patch candidates) by considering the bias of
bug-fixing performance and efficiency from the fault localization (e.g., top-k suspicious statements
reported by fault localization tools).

Additionally, a bug could have multiple buggy positions [57] located in single or several code
files, such as the Defects4J bug Chart-19 shown in Figure 6. To fix such kind of bugs, Avatar
considers each buggy position as a single bug to match a fix pattern for it. If a patch can make the
buggy program pass some previously failed test without generating new failed test cases, then it is
considered as a partially valid patch for the buggy program and Avatar keeps matching adequate
fix patterns for other suspicious statements (cf., lines 10, 12, and 13) based on this partially valid
patch.

Fix patterns in our database are collected from the artifacts released by Liu et al. [27] and Rolim
et al. [54]. Table 1 shows statistics about the pattern collection in these previous works. As most
of the fix patterns released by Liu et al. [27] will not change the program behavior, we only select
28 of them (released by Liu et al. [27]) for 18 violation types after manually checking that they can
change the program behavior (details shown in the aforementioned website).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:10 K. Liu et al.

Fig. 6. Patch of bug Chart-19 by fixing two buggy positions.

Fig. 7. A fix pattern for UC_USELESS_CONDITION14 violation [27].

Recall that each pattern is an edit script of repair actions on specific AST node types. AST nodes
associated with the faulty code locations are then regarded as the context of matching the fixing pat-
terns; i.e., these nodes are checked against the nodes involved in the edit scripts of fix patterns. For
example, the fix pattern shown in Figure 7 contains three levels of contexts: (1) IfStatement15

means that the pattern is matched only if the suspicious faulty statement is an IfStatement;
(2) InfixExpression16 indicates that the pattern is relevant when the predicate expression of
the suspicious IfStatement is an InfixExpression; (3) the matched InfixExpression
predicate in the suspicious statement must contain at least two sub-predicate expressions.

A pattern is found to be relevant to a faulty code location only if all AST node contexts at
this location matches with the AST node of the pattern. For example, the bug shown in Figure 3
is located within an IfStatement with an InfixExpression that is formed by three sub-
predicate expressions. This buggy fragment thus matches the fix pattern shown in Figure 7.

14The condition has no effect and always produces the same result as the value of the involved variable was narrowed

before. Probably something else was meant or condition can be removed.
15https://help.eclipse.org/neon/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/

IfStatement.html.
16https://help.eclipse.org/neon/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/

InfixExpression.html.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

https://help.eclipse.org/neon/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/IfStatement.html
https://help.eclipse.org/neon/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/InfixExpression.html

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:11

ALGORITHM 1: Fix pattern matching and patch generation.

Input :proд, a buggy program.
Input :S , a set of suspicious statements.
Input : F P , a set of pre-defined fix patterns.
Output :patch, a valid patch or null.

1 Function main (s ,F P)
2 patch := null ; /* Initialize the patch as null */
3 foreach s ∈ S do
4 /* Generate a patch by fixing statement s. */
5 patch ← fixStatement (s , F P) ;

6 if patch != null then
7 if isValidPatch (patch) then
8 /* A valid patch is generated by fixing statement s, and Avatar stops. */
9 return patch;

10 else
11 /* A partially valid patch is generated by fixing statement s. Patching the

buggy program proд with patch. */
12 proд ← patch;

13 next s ;

14 else
15 next s ;

16 /* Match fix pattern and generate patches for the suspicious statement s. */
17 Function fixStatement(s , F P)
18 /* Parse the suspicious statement s. */
19 s .contextAST← parseStatementIntoAST(s);

20 foreach f p ∈ F P do
21 if matchFixPattern (s .contextAST, f p .contextAST) then
22 patches ← generatePatches (s , f p);

23 foreach p ∈ patches do
24 if isValidPatch (p) or isPartiallyValidPatch (p) then
25 return patch ← p ;

26 else
27 next p ;

4.3 Patch Generation

Given a suspicious statement and an associated matching fix pattern, Avatar applies the repair
actions in the edit scripts of the pattern to generate patch candidates (cf., line 22 in Algorithm 1).
For example, the code change action of the fix pattern in Figure 7 is interpreted as removing a sub-
condition expression (or sub-predicate expression) in a faulty IfStatement. Thus, three patch
candidates, as shown in Figure 8, can be generated by Avatar for the buggy code in Figure 3, since
the statement has three candidate sub-predicates expressions.

4.4 Patch Validation

Patch candidates generated by Avatar must be systematically assessed. Eventually, using test
cases, our approach verifies whether a patch candidate is a valid patch or not. We target two types
of valid patches:

• Fully-fixing patches, which are patches that make the program pass all available test cases.
Once such a patch is validated, the execution iterations of Avatar are halted.
• Partially-fixing patches, which are patches that make the program pass not only all previ-

ously passing test cases, but also part of the previously failing test cases.

The first generated fully-fixing patch is prioritized over any other generated patch and is con-
sidered as the valid patch for the given bug. After iterating over all suspicious statements with

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:12 K. Liu et al.

Fig. 8. Patch candidates generated by Avatar with a fix pattern that is mined from patches for UC_USELESS
_CONDITION violations (cf., Figure 7) and which matches the buggy statement of bug Closure-13 (cf.,
Figure 3).

Fig. 9. Defects4J bug Math-67 fixed with two buggy positions.

all matching fix patterns, if Avatar fails to generate a fully-fixing patch for a bug but gener-
ates some partially-fixing patches, then these patches are considered as valid patches. Finally, the
correctness of all valid patches is further manually and systematically assessed by following the
protocol presented by Liu et al. [34]: (1) identical patches, the two patches are exactly identical,
excluding variations in whitespace, layout, and comments; and (2) semantically similar patches,
the patches are not identical, but developers regard that they have the same effect on the program
behavior.

4.5 Fixing Bugs with Multiple Buggy Positions

A bug could involve multiple buggy positions, and such bugs can be summarized into two cate-
gories with their bug-triggering test cases: (1) the multiple buggy positions are triggered by the
same test cases, e.g., the Defects4J bug Math-67 shown in Figure 9 with two buggy positions that are
triggered by the same test case testQuinticmin, and (2) the multiple buggy positions are trig-
gered by the independent test cases, respectively, e.g., the Defects4J bug Chart-19 shown in Figure 6
with two buggy positions that are triggered with the test cases testGetDomainAxisIndes
and testGetRangeAxisIndex, respectively.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:13

When Avatar fixes the bug with multiple buggy positions, it relies on the independent bug-
triggering test cases. For example, a bug b = b1, b2, where b1 and b2 are two buggy positions of
the bug b, which can be triggered by two independent test cases t1 and t2, respectively. When
Avatar fixes the bug b, it first generates the patch p1 for b1 if p1 can make the patched bug b
pass the execution of test case t1 and previously successfully executed test cases. Then Avatar
will generate the patch p2 for b2 in the same way. So, with this mechanism, Avatar is capable of
fixing bugs with multiple buggy positions triggered by the independent test cases, respectively,
but cannot solve bugs with multiple buggy positions failing to execute the same test cases, e.g.,
the bug Math-67 shown in Figure 9.

5 SETUP FOR ASSESSMENT

5.1 Research Questions

Our investigation into the repair performance of Avatar seeks to answer the following research

questions (RQs):

• RQ1: How effective are fix patterns of static analysis violations for repairing pro-
grams with semantic bugs? Recall that we broadly consider as semantic bugs all bugs that
are uncovered by executing developer test cases. Our first research question assesses how
many benchmark bugs can be fixed with fix patterns extracted from common code changes
fixing static analysis violations. To that end, (1) we first investigate whether Avatar can gen-
erate a correct patch (i.e., a valid patch fixes the related bug as expected by its developers)
to fix a semantic bug when Avatar is configured with the perfect fault localization (i.e., the
developer-provided fix location) to avoid the negative impact of the incorrect fault localiza-
tion. Then, (2) we investigate how effectively Avatar can fix such semantic bugs that appear
to be localizable by static analysis tools to explore the possibility of integrating Avatar with
static analysis tools to solve program bugs.
• RQ2: Which bugs and which patterns are effective targets of Avatar in an automated

program repair scenario? This research question dissects the data yielded during the in-
vestigation of RQ1, with the objective of assessing the diversity of bugs that can be fixed as
well as the types of violation fix patterns that have been successfully leveraged.
• RQ3: How does Avatar compare to the state-of-the-art with respect to repair perfor-

mance? With this research question, we aim at showing whether the proposed approach is
effective in the landscape of APR systems. Does Avatar offer comparable performance? To
what extent can Avatar complement existing APR systems?
• RQ4: To what extent could the bug-fixing performance and efficiency of Avatar be

impacted by different fault localization techniques? As reported by Liu et al. [29], the
fault localization configuration in APR tools could impact the bug-fixing performance of ARP
tools. This research question is to investigate the impact of the different fault localization
techniques in the normal program repair pipeline.
• RQ5: Could the stack trace information be used to accelerate the bug-fixing perfor-

mance of Avatar? In Java programs using JUnit, normal failing test cases always result in
crashes, since JUnit assertions produce exceptions if its condition is not satisfied. The fail-
ing execution of some test cases can lead to crashes with exceptions being thrown, where
crashed statements will be enumerated in the corresponding stack trace. When develop-
ers fix such bugs manually, they will first attempt those crashed statements before others.
Therefore, this research question aims to explore the possibility of improving the bug-fixing
performance of Avatar with the stack trace information from failed executions of test
cases.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:14 K. Liu et al.

Table 2. Subjects Used in Our Experiments

Projects Bugs Projects Bugs

D
ef

ec
ts

4J
-v

2.
0.

0

JFreeChart (Chart) 26 Jsoup 93
Apache commons-cli (Cli) 39 Mockito 38
Closure compiler (Closure) 174 Joda-Time (Time) 26
Apache commons-codec (Codec) 18

B
u

g
s.

ja
r

Apache Accumulo 98
Apache commons-collections (Collections) 4 Apache Camel 147
Apache commons-compress (Compress) 47 Apache Commons-math 147
Apache commons-csv (Csv) 16 Apache Flink 70
Google Gson (Gson) 18 Apache Jackrabbit Oak 270
FastXML jackson-core (JacksonCore) 26 Apache Log4J2 81
FastXML jackson-databind (JacksonDatabind) 112 Apache Maven 48
FastXML jackson-dataformat-xml (JacksonXml) 6 Apache Wicket 289
Apache commons-jxpath (JxPath) 22 BEARS 251
Apache commons-lang (Lang) 64 QuixBugs 40
Apache commons-math (Math) 106 Total 2,284

5.2 Subjects

We evaluate Avatar on Defects4J [17], Bugs.jar [55], QuixBugs [75], and BEARS [40], which have
been used by state-of-the-art APR systems targeting Java programs. Table 2 summarizes the statis-
tics on the number of bugs available in version 2.0.017 of Defects4J, Bugs.jar, BEARS, and QuixBugs.
“Projects” and “Bugs” denote, respectively, the Java projects the bugs belong to and the number
of bugs in each project.

The version 2.0.0 of Defects4J [17] includes 835 bugs from 17 open-source Java projects. These
bugs are collected by identifying the bug-fixing commits from the maintaining history of programs,
according to leveraging the bug tracking system (e.g., JIRA18) and executing test suites on the bug-
fixed versions of programs and their related buggy versions. The benchmark has been widely used
in the community of automated program repair [33, 34]. Bugs.jar [55] collects 1,158 bugs from
eight Apache projects, which is created using the same approach as Defects4J. Its main contri-
bution is that it has more bugs than Defects4J. BEARS [40] contains 251 bugs from 72 different
GitHub Java open-source projects, which is built by mining program repositories with the commit
building state from Travis Continuous Integration. Compared with the previous two benchmarks,
BEARS has a larger diversity of projects. QuixBugs [75] contains 40 single-line bugs from 40 pro-
grams. Each program implements one well-known algorithm, such as Quicksort. It is a bench-
mark in the lab, different from the previous three benchmarks collecting bugs from real-world
programs.

5.3 Experimental Setup

Computing Environment: All our experiments are performed on a PC running Ubuntu 18.04
LTS with Intel Core i5-9400 2.90 GHz CPU (six cores) and 32 GB RAM, and a laptop running
Ubuntu 20.04 LTS with Intel Core i7-7700HQ 2.80 GHz CPU (eight cores) and 16 GB RAM.

Fault Localization: For evaluation purposes, we apply different fault localization settings to
the experiment of each research question, while the default setting of Avatar is to use the GZoltar
framework with the Ochiai ranking metric. The usage of GZoltar and Ochiai reduces the compar-
ison biases, since both are widely used by APR systems in the literature.

17https://github.com/rjust/defects4j.
18https://www.atlassian.com/software/jira.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

https://github.com/rjust/defects4j
https://www.atlassian.com/software/jira

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:15

• First, we apply Avatar configured with the perfect fault localization setting to the semantic
bugs in four benchmarks (for RQ1 in Section 6.1). This configuration is to reduce the bias
given by fault localization [29] and to assess the effectiveness of fixing semantic bugs with
the fix patterns in Avatar.
• Second, we apply Avatar to bugs in the benchmarks with the location information of static

analysis violations detected by three state-of-the-art static analysis tools (namely, SpotBugs,
Facebook Infer, and Google ErrorProne) to answer RQ1 in Section 6.1. To that end, we con-
sider the bugs detected by the four static analysis tools that are reported by Habib and
Pradel [10]. This configuration focuses on the effectiveness of Avatar on such semantic
bugs that can also be detected statically.
• Third, for RQ3 and RQ4, we compare Avatar with the state-of-the-art APR tools that are

evaluated on the Defects4J benchmark (see Section 6.3). To that end, we attempt to replicate
two scenarios of fault localization used in APR assessments: The first scenario assumes that
the faulty method name is known [24] and thus focuses on ranking the inner-statements
based on Ochiai suspiciousness scores; the second scenario makes no assumption on fault
location and thus uses the default setting of Avatar.
• Finally, in RQ5, we propose two principles with the stack trace information to refine the fault

localization results of GZoltar for Avatar, then to investigate the possibility of improving
bug-fixing performance for Avatar with the stack trace information.

Timeout: Note that a generated patch may introduce new defects, e.g., endless loop, making
the patch validation process time-consuming. Here, we configure Avatar to validate each patch at
most 5 minutes. If patch validation times out, then Avatar will stop validating this patch and turn
to the next. If a valid patch, which can make the patched buggy program pass all test cases, is gen-
erated, then Avatar will be terminated. Otherwise, Avatar will be halted when more than 5,000
patch candidates are generated by referencing a recent empirical study for APR efficiency [34].

6 ASSESSMENT

6.1 Applying Avatar to Semantic Bugs

In this work, Avatar is implemented with the fix patterns inferred from the patches of static
analysis violations that are identified by static analysis tools without executing any test cases,
which are different from the semantic bugs that failed to pass test cases. Before assessing the bug-
fixing performance of Avatar in the normal program repair pipeline (i.e., the bug positions are
localized with a specific fault localization technique, cf., Section 6.3.2), we propose to investigate
whether the fix patterns inferred from the patches for fixing static analysis violations can be used
to fix the semantic bugs that are failing to pass the concrete functional test(s) without the impact
from the fault localization [29, 34]. Concretely, we first apply Avatar, configured with the perfect
fault localization assumption, to the bugs in four benchmarks (i.e., Defects4J, Bugs.jar, BEARS,
and QuixBugs) released in the community. Then, we further apply Avatar to the bugs that can
be localizable by static analysis tools to explore the possibility of integrating Avatar with static
analysis tools to address program bugs.

Applying Avatar to Semantic Bugs in Four Benchmarks. We run Avatar on all bugs in
four datasets (i.e., Defects4J, Bugs.jar, BEARS, and QuixBugs). As the objective is to assess whether
a correct patch can be generated for the semantic bug with Avatar, it is configured with the perfect
fault localization setting in this experiment scenario. Table 3 details the number of bugs in four
benchmarks that are fixed by Avatar. Fully and partially fixed bugs are fixed with fully-fixing

and partially-fixing patches (cf., Section 4.4) generated by Avatar, respectively. Overall, Avatar
can fix 107 bugs with valid patches, and 72 of them are further manually confirmed as correct

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:16 K. Liu et al.

Table 3. Number of Bugs Fixed by Avatar and CoCoNut with the Perfect Fault Localization Setting

Project CoCoNut [39]
Avatar

Fully Fixed bugs Partially fixed bugs

Chart (C) 2/4 8/9 1/3
Cli 5/5 2/4 0/0
Closure (Cl) 8/10 11/14 2/5
Codec (Co) 1/1 2/3 0/0
Compress (Cp) 2/2 4/7 0/1
Csv 1/3 4/5 0/0
Gson (G) 1/1 1/1 1/2
JacksonCore (JC) 4/4 1/2 0/0
JacksonDatabind 4/5 0/0 0/0
Jsoup (J) 1/1 1/6 1/1
JxPath (JP) 1/1 0/1 1/1
Lang (L) 7/8 4/10 1/2
Math (M) 10/13 9/16 0/3
Mockito (Mc) 0/0 2/2 0/1
Time (T) 1/2 2/3 0/0

Defects4J (D4J) Subtotal 48/60 51/83 7/19

Bugs.jar (Bj) − 11/14 0/1

BEARS − 2/2 1/2

QuixBugs (Quix) 13/20 8/8 0/7

Total 61/80 72/107 8/29
†In each column, we provide x/y numbers: x is the number of correctly fixed bugs; y is the number of bugs for which a

valid patch is generated by the APR tool (“?” for y values in the CoCoNut column stands for “unknown,” as it is not

reported in the corresponding paper [39]). The same applies to the following similar tables.

patches by following the protocol presented by Liu et al. [34]. We also note that, for 29 other
bugs, Avatar generates partially-fixing patches. Eight among these partially-fixing patches are
manually found to be correct. Specifically, Avatar generates correct patches for 5 bugs (i.e., Chart-

14, Chart-19, Math-4, Math-77, Math-98) with multiple buggy positions, where an example with 4
buggy positions (Chart-14) is shown in Figure 10.

We closely investigate the bugs with multiple positions/lines fixed by Avatar and observe that
these bugs can be summarized into two categories: (1) the integration of several simple bugs that
can be triggered by independent test cases and (2) the bugs with several buggy lines that can be
fixed by directly removing those buggy code lines. It indicates that, although Avatar is capable of
fixing the semantic bugs with multiple buggy positions/lines, its bug-fixing ability is still limited by
the inherent shortage of fix patterns that are inferred from the patches for static analysis violations
with simple code changes (e.g., fixing the null pointer exception, removing the useless code, and
replacing the wrongly used identifier). Fixing complicated bugs is still an open research question
for the program repair community.

Although Defects4J has been widely used in the community of automated program repair,
Avatar is the first APR tool evaluated with the latest version of Defects4J (i.e., Defects4J, ver-
sion 2.0.0), which contains 835 bugs from 17 open-source Java projects. As presented in Table 3,
Avatar can generate patches for 83 bugs from 14 out of 17 projects in the Defects4J benchmark to
make the corresponding patched program pass all tests. More specifically, the patches for 51 out of
those 83 bugs in 13 out of 14 projects are correct, while the patches for the remaining 32 bugs are

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:17

Fig. 10. A single patch fixing four buggy positions of Chart-14.

plausible but incorrect. Plausible patches are valid patches that can make the patched programs
pass all tests but do not really fix the bugs as expected by their developers.

The Bugs.jar dataset contains 1,158 bugs, but this dataset has not been maintained anymore
since February 2018, and the majority of those bugs cannot be compiled successfully, since the
related runtime environments are not provided. It leads that Avatar cannot have trials for all
of them, since Avatar relies on compiled test cases to locate bug positions and validate patches.
Consequently, according to the experiments of generating patches for 60 bugs in the Bugs.jar
dataset, Avatar can generate patches for 14 bugs that make those 14 patched programs pass all
tests, and 11 of them are correct patches.

For the BEARS dataset, Avatar only correctly fixes 2 out of 251 bugs. After looking at each bug
closely, we observe that most bugs in the BEARS dataset involve multiple buggy lines or multiple
buggy locations, which require new code fragments for generating patches with more complicated
code change actions than the fix patterns in Avatar. Avatar’s ability to address bugs with multiple
buggy locations is limited to the bugs whose locations are exposed by individual test cases, which
is not the case in BEARS. What is more, Avatar is a repairing tool with simple fix patterns for
simple code changes and is not good at generating new code fragments with complicated code
changes for difficult bugs, so Avatar is short of the knowledge to deal with these complicated
bugs. To sum up, the fix patterns inferred from the patches of static analysis violations present

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:18 K. Liu et al.

Table 4. Statically Detected Bugs Fixed by Avatar

Bug ID SpotBugs Infer ErrorProne Avatar’s Fixing Pattern

Chart-1 NP_ALWAYS_NULL NULL_DEREFERENCE NP_ALWAYS_NULL
Chart-4 NP_NULL_ON_SOME_PATH NULL_DEREFERENCE NP_NULL_ON_SOME_PATH

Chart-8
ChainingConstructor
IgnoresParameter

DLS_DEAD_LOCAL_STORE

Chart-24 DLS_DEAD_LOCAL_STORE DLS_DEAD_LOCAL_STORE
Csv-15 OperatorPrecedence UCF_USELESS_CONTROL_FLOW
Math-50 FE_FLOATING_POINT_EQUALITY UCF_USELESS_CONTROL_FLOW
Math-77 MissingOverride UPM_UNCALLED_PRIVATE_METHOD
Total 4/15 2/8 3/19

x/y reads as: x is the number of bugs fixed by Avatar among the y bugs in Defects4J 2.0.0 that can be localized by

each static analysis tool. The information of localizable bugs is partially excerpted from Habib and Pradel’s study [10]

as well as our execution of the three tools.

the potential of fixing semantic bugs, but still are not the feasible prescription for the complicated
bugs that are the prime challenge faced by the automated program repair community.

Avatar correctly fixes 8 of bugs in the QuixBugs benchmark without generating any incorrect
patches. QuixBugs is a dataset of 40 in-the-lab bugs in the Java implementations of 40 classic
algorithms (e.g., quick-sort, depth-first-search). All of the 8 bugs are single-line bugs that can
be easily matched with the corresponding fix patterns to mutate the related buggy operators or
variable references.

Overall, comparing the number of bugs fixed by Avatar and the number of bugs in each project
and each benchmark dataset, Avatar presents overfitting to the evaluation dataset as other APR
tools investigated by Durieux [5]. For example, Avatar correctly fixed 8 out of 26 Chart bugs in
Defects4J, but it can only fix one out of 93 Jsoup bugs. However, Avatar can generate correct
patches for 51 out of 835 Defects4J bugs but can only fix 11 out of 1,158 bugs in the Bugs.jar
benchmark. Such results indicate that Avatar also overfits to the benchmark dataset.

Applying Avatar to Statically Detected Bugs in Defects4J. In this study, we refer to statically
detected bugs as those whose buggy positions overlap with violation positions reported by static
analysis tools. We further apply Avatar to statically detected bugs in Defects4J to explore the
possibility of fixing these bugs with Avatar. Table 4 provides details of the bugs (in Defects4J) that
can be detected by static analysis tools (see Section 5.3) and are successfully repaired by Avatar
in Defects4J.

We claim that out of the 15, 8, and 19 bugs that can be detected, respectively, by SpotBugs
(v4.0.1), Facebook Infer (v0.17.0), and Google ErrorProne (Ant 2.3.1) on Defects4J 2.0.0, Avatar can
successfully generate correct patches for 4, 2, and 3 bugs, respectively. Remark that Math-77 is a bug
with two buggy positions, and Avatar cannot completely fix this bug. Avatar successfully fixes
the single buggy position revealed by ErrorProne, and thus, we classify it as a positive repair here.

Overall, seven distinct localizable bugs have been correctly fixed with patches generated
by fix patterns of FindBugs mined from violation-fixing patches in Reference [27]. All seven
bugs are related to distinct violation types. Among 15 violations reported by SpotBugs, Chart-

1 (NP_ALWAYS_NULL), Chart-4 (NP_NULL_ON_SOME_PATH), and Chart-24 (DLS_DEAD_
LOCAL_STORE) are fixed by the corresponding patterns in Avatar, where Chart-1 and Chart-

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:19

Fig. 11. The bug (Chart-17) detected by SpotBugs is not fixed by Avatar, since no fix pattern can be matched.

4 are also warned by Infer’s NULL_DEREFERENCE violation rule. In addition, Chart-8 warned
as ChainingConstructorI gnoresParameter, Math-50 warned as FL_FLOATING_
POINT_EQUALITY, Csv-15 warned as OperatorPrecedencce, and Math-77 warned as
MissingOverride by ErrorProne, are fixed by Avatar’s DLS_DEAD_LOCAL_STORE,
UCF_USELESS_CONTROL_FLOW and UPM_UN CALLED_PRIVATE_METHOD pattern, respec-
tively. The fix patterns used by Avatar and the corresponding static violations are available in
Table 4. Note that Liu et al.’s [27] previous work claimed their mined patterns (for fixing violations
detected by FindBugs) could be applied to violations reported by other static analysis tools. Our ex-
periment indeed proves that the patterns fixing two bugs reported by SpotBugs (i.e., the successor
of FindBugs) also work with the help of reports by Facebook Infer.

Our experiment reveals that Avatar’s fix patterns of static analysis violations are not effective
on other statically detected bugs. We investigate the cases of such bugs and conclude as follows:

(1) Since Avatar implements a limited number of fix patterns, several bugs cannot be matched
by any fix pattern. Here, we use Chart-17, as an example, detected by SpotBugs as a
CN_IDIOM_S UPER_CALL19 violation, shown in Figure 11. The patch generation pro-
vided by developers needs five different repair actions, which cannot be matched with any
fix patterns in Avatar.

(2) There are also cases where the fixes are truly domain-specific, so Avatar’s patterns are too
general to scale out. We refer to domain-specific fixes as those that are beyond the repairing
ability of Avatar. For example, some fixes are actually new features or refactoring, which
involve adding or moving multiple lines, such as Math-91 in Figure 12. The real patch over-
writes the calculation of “nOd” and “dOn” with the specific values except updating the data
type, where Avatar does not have enough knowledge to fix them.

19http://findbugs.sourceforge.net/bugDescriptions.html#CN_IDIOM_NO_SUPER_CALL.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

http://findbugs.sourceforge.net/bugDescriptions.html#CN_IDIOM_NO_SUPER_CALL

96:20 K. Liu et al.

Fig. 12. The patch for bug Math-91 with over-written feature that cannot be fixed by Avatar.

Fig. 13. The bug Csv-14 is false-positively identified as a statically detected bug.

(3) In other cases, the violation warned by static analysis tools is actually a coincidental false
positive claimed in Reference [10], since the reported violation does not really match the
semantically faulty code entity to be modified. Figure 13 provides a descriptive example (Csv-

14) of such false positives. The violation OperatorPrecedence20 should be fixed with
grouping parentheses to disambiguate expressions that contain both “| |” and “&&.” However,
the real fixing patch is to replace the compiled values for the valuable “c.” After the bug Csv-

14 is fixed, the violation OperatorPrecedence still can be detected by Google Error
Prone at the same position. There is no relationship between the fixing behavior and the
violation type. Therefore, assessing the ability of detecting semantic bugs for static analysis
tools, it should consider the detected position as well as the relation between the violation
and the behavior of the buggy code.

6.2 Dissecting the Fix Ingredients

Bugs in the benchmark Defects4J are collected from the real-world projects that failed to pass the
concrete functional test cases, while fix patterns implemented in Avatar are extracted from com-
mon patches for fixing static analysis violations. We thus investigate how fix patterns in Avatar
can be leveraged to address semantic bugs from the benchmarks listed in Table 2. To that end, we
resort to dissect the ingredients that were successfully leveraged in the generated correct patches
and analyze the similarity between the code change actions of fixing these bugs by developers and
the change actions of fix patterns in Avatar. Table 5 provides the summary of this dissection.

20https://errorprone.info/bugpattern/OperatorPrecedence.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

https://errorprone.info/bugpattern/OperatorPrecedence

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:21

Table 5. Fix Ingredients in the Static Analysis Violation Fix Patterns Used by Avatar to Correctly Fix Bugs

Violation Types associated

with the Fix Patterns
Fix Ingredients from the Violation Fix Patterns Fixed Bug IDs

NP_NULL_ON_SOME_PATH

1. Wrap buggy code with if-non-null-check block:
“if (var != null) {buggy code}”;

2. Insert if-null-check block before buggy code:
“if (var == null) {return false;} buggy code;” or
“if (var == null) {return null;} buggy code;” or
“if (var == null) {throw IllegalArgumentException.} buggy code;”

C-4,14,19,26,
Cli-5, Cl-2, Co-17,

Csv-4,5,11,
G-6, M-4,
Mc-29,38,

Quix-5, BEARS-56.

DLS_DEAD_LOCAL_STORE
Replace a variable with other one:
e.g., “var1 = var2var3;”

C-8,11,24, Cp-14,
L-6,57,59,

M-33,59,98, T-7,
Bj-L-16,Bj-O-194,
Bj-M-45,63,79,114,

Quix-8,11,31.

UC_USELESS_CONDITION

1. Mutate the operator of an expression in an if statement:
e.g., “if (expA >>= expB) {...}”;

2. Remove a sub-predicate expression in an if statement:
“if (expA || expB) {...}” or “if (expA || expB) {...}”;

3. Remove the conditional expression:
“expA ? expB : expC” or “expA ? expB : expC”

Cl-18,31,38,
Cl-62,73,168,

Cp-19, JC-25, L-15,
M-82,85, T-19,

BEARS-133, 135
Quix-6,14,24,28,

Bj-A-21, Bj-O-183,
Bj-M-38,54.

UCF_USELESS_CONTROL_FLOW

1. Remove an if statement but keep the code inside its block:
“if (exp) { code }”;
2. Remove an if statement with its block code:
“if (exp) { code }”

C-18, Cli-32,
Cl-11,106,115,126,138,

Co-8, Cp-27,31,
Csv-15, G-4, J-63,68,
JP-17, L-10, M-50.

ICAST_IDIV_CAST_TO_DOUBLE
Cast the operands of division from integer to double:
“FastMath.pow(2 * FastMath.PI, -dim ((double) -dim) / 2 2d);”

M-11,
Bj-M-137.

NP_ALWAYS_NULL
Mutate the operator of null-check expression:
“var != == null,” or “var == != null”

C-1.

UPM_UNCALLED_PRIVATE_METHOD
Remove a method declaration:
“Modifier ReutrnType methodName(Parameters) { code }”

Cl-46.

BC_UNCONFIRMED_CAST
Wrap buggy code with if-instanceof-check block:
“if (var instanceof Type) {buggy code}
else {throw IllegalArgumentException;}”

M-89.

†Only correctly fixed (including partially correctly fixed bugs highlighted with italic) bugs are listed in this table.

* “Bj-A,” “Bj-L,” “Bj-M,” and “Bj-O” represent “Accumulo,” “Log4J2,” “Commons-Math,” and “OAK” programs in the

Bugs.jar dataset, respectively.

First, we note that all correctly fixed bugs were addressed with patches generated from patterns
mined in the study of Liu et al. [27] (i.e., based on FindBugs violations). Fix patterns from the study
by Rolim et al. [54] (which are based on PMD violations) are indeed associated with exceedingly
simple violations, which are unlikely to be revealed as semantic bugs (i.e., detected via developer
test cases). An example of such simple pattern is their EP7 fix pattern: “replace List<String>
a = new ArrayList()with List<String> a = new ArrayList<>().” In any case,
six among the nine fix patterns released by Rolim et al. are related to performance, code practice, or
code style. Our manual investigation of Defects4J bugs reveals that none of the bugs are associated
with these types of issues.

Second, we note that the fix patterns of only 8 (out of 18) violation types21 have been success-
fully used to generate correct patches for Defects4J bugs (cf., Table 5). Among the 80 (72 fully
and 8 partially) correctly fixed bugs, 75 (93.75%) are fixed by the patterns of 4 violation types:
NP_NULL_ON_SOME_PATH, DLS_DEAD_LOCAL_STORE, UC_USELESS_CONDITION, and U
CF_USELESS_CONTROL_FLOW. With the description of violations provided in FindBugs and the
repair actions of their fix patterns, we then explain why the fix patterns of static analysis violations
can address semantic bugs.

The violation NP_NULL_ON_SOME_PATH is explained as dereferencing a null value when the
code is executed. In Avatar, its fix pattern is to add a null check at the dereferencing location

21Note that comparing with the previously published version of Avatar [30], the newly added fix pattern of only one out

of eight violation types has been successfully used to fix one more bug with the correct patch, and other bugs are newly

fixed because of the multi-position setting of Avatar and the new version of Defects4J that contains more bugs than the

previously published version.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:22 K. Liu et al.

Fig. 14. Cli-5 in Defects4J fixed by Avatar with the fix pattern for the NP_NULL_ON_SOME_PATH violation.

straightforwardly, making the program exit the context method or return a default value of the
method declaration type when the value of the suspicious variable is null. A real example is Cli-5:
the buggy method tries to strip the leading hyphens from the input String parameter “str” by
calling String.startsWith() without considering the input to be a null string reference that will lead
to a NullPointerException.

Such an issue can be resolved by adding a null check for the parameter “str” before asserting
the leading hyphens. Indeed, Avatar’s patch adds a null check for the input parameter and fixes
this bug. Figure 14 shows the detail of the patch in GNU Diff format. The bugs Chart-14, 19, Codec-

17, Csv-4, Csv-11, Math-4, and Mockito-38 have the same problem and are addressed in the same
way by Avatar. The bugs Chart-4, 26, Closure-2, Csv-5, Gson-6, and Mockito-29 also face the same
problem and are fixed by Avatar, warping the impacted code fragments with the conditional
non-null check block. The aforementioned 16 bugs are caused by ignoring the null cases of
the referenced variables, which are just right for the fix pattern NP_NULL_ON_SOME_PATH in
Avatar.

FindBugs describes the violation DLS_DEAD_LOCAL_STORE as assigning a value to a local
variable whose value is not read or used in any subsequent instruction. It often indicates an error
because the value computed is never used. The repair action of its fix pattern is to substitute a
variable at the buggy location to another variable, which addresses the same code change behavior
of replacing the buggy referenced variable with the correct one. Take Lang-6 as an example. At the
buggy location, a for-loop is used to accumulate the number of characters, but the local variable
“pt” defined in the for-loop is never used, which causes the bug.

Avatar fixes this bug by replacing the variable “pos” with the local variable “pt.” Figure 15
shows the detail of the patch. By replacing the buggy referenced variable with the adequate vari-
able, Avatar correctly fixes other 19 bugs (i.e., Chart-8, 11, 24, Compress-14, Lang-57, 59, Math-33,

59, 98, Time-7, Bugs.jar-Log4J2-16, Bugs.jar-OAK-194, Bugs.jar-Math-45, 63, 79, 114, and QuixBugs-

8, 11, 31) as well. Although the initial object of the fix pattern DLS_DEAD_LOCAL_STORE is to
address the uncalled variable, its repair action can be transplanted to fixing bugs with the wrong-
referenced variable. Additionally, the patches generated by Avatar for bugs Compress-14 and Lang-

57 are different from the ground-truth patches provided by developers, but they are semantically
similar to each other, since they reach the same target in different ways. It indicates that Avatar
can fix bugs in a way that is different from the developers’ bug-fixing results.

For the violation UC_USELESS_CONDITION, FindBugs explains it as a case that a condition
always produces the same result as the value of the involved variable was narrowed before and will

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:23

Fig. 15. Lang-6 in Defects4J fixed by Avatar with the fix pattern for the DLS_DEAD_LOCAL_STORE
violation.

Fig. 16. Time-19 in Defects4J fixed by Avatar with the fix pattern for the UC_USELESS_CONDITION
violation.

not affect the related code. Its repair action is either removing the condition or trying to modify
the condition (e.g., by flipping the operator). One example is the patch for bug Closure-31 shown in
Figure 3, where Avatar’s patch removes one of the three conditions in the buggyif-statement
and fixes this bug. Figure 16 shows another example—the patch for the bug Time-19—that is
generated Avatar by changing the operator in the buggy conditional infix-expression. Avatar
also generates correct patches for the other 20 bugs (i.e., Closure-18, 38, 62, 73, 168, Compress-19,

JacksonCore-25, Lang-15, Math-82, 85, BEARS-133, 135, QuixBugs-6, 14, 24, 28, Bugs.jar-Accumulo-

21, Bugs.jar-OAK-138, and Bugs.jar-Math-38, 54). We observe that these bugs are caused by the
redundant conditional expressions or the incorrect operators in the conditional infix-expressions,
which can be fixed by removing the unneeded conditional expressions or flipping the operators
in buggy infix-expressions. The UC_USELESS_CONDITION violation describes different issues
from those bugs, but their fixing behavior reaches the same destination.

Being different from the UC_USELESS_CONDITION, the violation UCF_USELESS_
CONTROL _FLOW means that the control flow of a statement continues onto the same place
regardless of whether the branch is taken or not. Thus, its fix pattern is to remove the control
flow but keep the code in the block or remove all code of the entire control flow, as presented in

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:24 K. Liu et al.

Fig. 17. Lang-10 in Defects4J fixed by Avatar with the fix pattern for the violation UC_USELESS_
CONTROL_FLOW.

Table 5. The bug Lang-10 shown in Figure 17 is caused by the “IfStatement,” which will change
the value of the variable “regex” and break its parent loop “ForStatement,” thus, it is fixed
by removing the entire control flow of the “IfStatement” with Avatar. Avatar also generates
correct patches for other 12 bugs (i.e., Cli-32, Closure-11, 115, 126, Codec-18, Compress-27, 31, Csv-15,

Gson-4, Jsoup-63, 68, and Math-50) that have the same problem with the same repair action. In addi-
tion, Avatar correctly fixes Chart-18, Closure-106, 138, and JxPath-17 by removing the control flow
statement but keeping the code in the block. The fix pattern for the UC_USELESS_CONDITION
violation is to remove the useless control flow in code, which is actionable to remove the buggy
control flow in programs to fix the related bug.

The other 5 bugs are fixed with the remaining four fix patterns. ICAST_IDIV_CAST_
TO_DOUBLE warns about the division result of implicitly casting integers to float-point numbers
may lose precision that may deviate from the developer’s expected behavior for programs. Its fix
pattern in Avatar will cast both of the integer operands to float-point numbers in the dividing ex-
pression before performing the division, which can resolve the losing-precision problem. It indeed
fixes the related bugs Math-11 and Bugs.jar-Math-137. The violation NP_ALWAYS_NULL describes
a NullPointerException will be thrown because of a null pointer dereference. Avatar addresses this
issue by flipping the operator in the conditional null-checking expression to avoid dereferencing,
which correctly fixes the bug Chart-1. UPM_UNCALLED_PRIVATE_METHOD is used to present
that a private method is never called in the program, which is fixed by removing the entire un-
called method directly. Our experimental results show that its fix pattern can be used to fix the
bug caused by the incorrectly overridden method (i.e., Closure-46). BC_UNCONFIRMED_CAST
represents the unchecked/unconfirmed cast in code that could cause the faulty execution with
ClassCastException. Thus, its fix pattern is to add the instanceof checking before the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:25

cast, which indeed fixes the semantic bug caused by the unchecked cast (i.e., Math-89). Note that
the bug-fixing performance of these four fix patterns is not associated with the static analysis tools
and their granularity, which could be related to the two-aspect reasons discussed below.

The experimental results suggest that the fix patterns for static analysis violations can be used
to address semantic bugs that make the program fail on functional tests. However, some of the
fix patterns mined from the available data were not successfully applied to fix semantic bugs in
the considered benchmarks or were useful only on a small number of bugs. Nevertheless, this
experimental fact could be biased by the available artifact, and we could not conclude that such
fix patterns are definitely not effective. Indeed, we can identify two reasons why these patterns
were not effective in our experiments: (1) the low diversity of bugs in the benchmark dataset
which maintained manually, and (2) the representativity of the mined fix patterns may be limited:
They are mined from publicly recorded patches; other patches made during development that are
associated to functional test cases may be missing in our inference patch dataset. We further note
that static analysis violations may be entirely different from the functions bugs that make programs
fail to pass test cases. Exploring such cases is, however, out of the scope of our study. Instead, our
work attempts to leverage the fix patterns that can be relevant for addressing semantic bugs.

6.3 Comparing against the State-of-the-art

To reliably compare against the state-of-the-art in Automated Program Repair (APR), we must
ensure that the Fault Localization (FL) step is properly tuned, as FL could bias the bug-fixing
performance of APR tools [29, 33, 34]. We identify three major configurations in the literature:

(1) Restricted_FL-based APR: In this case, APR systems make the assumption that some infor-
mation of the code location is available. For example, in HDRepair [24], fault localization is
restricted to the faulty methods, which are assumed to be known. Such a restriction substan-
tially increases the accuracy of the target list of fault locations for which a patch must be
generated [29]. In Section 6.1, we have made a similar strong assumption that fault locations
are known, as our objective was to assess the patch generation performance of Avatar.

(2) Normal_FL-based APR: In this case, APR systems directly use off-the-shelf fault localiza-
tion techniques (e.g., GZoltar [3]) to localize bug positions at the line level. Specifically, 13
state-of-the-art open-source APR tools are re-executed with the same fault localization set-
ting (i.e., GZoltar-v1.7.2 + Ochiai ranking metric) as Avatar.

(3) APR tools with Unspecified/Unconfirmed FL configuration: In this case, APR tools only
claim that the fault localization is conducted with spectrum-based fault localization without
clearly clarifying the exact FL technique. And we failed to re-execute the related APR tools
for different reasons (e.g., the problems from availability or executability).

We thus compare the bug-fixing performance of Avatar with the state-of-the-art APR tools after
classifying them into these three groups. Note that, in this section, the experiments for Avatar are
conducted with the Defects4J dataset, since the state-of-the-art APR tools are mainly evaluated on
this benchmark.

6.3.1 Comparison against Restricted_FL-based APR Tools. We first compare Avatar against
the state-of-the-art APR systems, which implement a restricted fault localization configuration,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:26 K. Liu et al.

Fig. 18. Relationship of correctly fixed bugs by CoCoNut and Avatar.

including HDRepair [24], JAID [4], and SketchFix [14]. For Avatar, we select faulty locations
using the same assumption as these three tools, i.e., focusing on attempting to repair suspicious
code statements that are reported by the fault localization tool (i.e., the GZoltar-v0.1.1 with the
Ochiai metric [52]) but only considering the suspicious statements within the known faulty meth-
ods. This assumption leaves out many noisy statements, reducing the probability of generating
plausible patches for bugs and further increasing the chance to generate a correct patch before a
plausible one or execution timeout.

In the community, APR tools have been proposed to be evaluated with the assumption of perfect
fault localization. Such APR tool (CoCoNut [39]) is included in this category as well. The compar-
ison results between Avatar and CoCoNut are presented in Table 3. We observe that Avatar can
correctly fix more bugs in Defects4J than CoCoNut,22 but CoCoNut can correctly fix more bugs in
QuixBugs than Avatar. Avatar achieves higher correct ratios (CR) of generating correct patches
for fixed bugs in QuixBugs dataset with 100% precision but achieves lower CR on Defects4J dataset
with 61.4% precision than CoCoNut (i.e., 65% and 80%, respectively). Figure 18 further illustrates
the differences between the bugs correctly fixed by Avatar and CoCoNut. CoConut can correctly
fix more bugs in QuixBugs that cannot be correctly fixed by Avatar, but Avatar can correctly fix
more Defects4J bugs that cannot be correctly fixed by CoCoNut. CoCoNut cannot generate correct
patches for 39 (=36 + 3) bugs in Defects4J and QuixBugs that can be correctly fixed by Avatar. It
indicates that Avatar can be complementary to the state-of-the-art CoCoNut APR tool.

Table 6 presents the comparing results against the APR tools under the assumption of known
faulty methods. Note that HDRepair, JAID, and SketchFix are evaluated with the early version
of Defects4J, thus, their fixing performance on the newly added bugs in Defects4J-v2.0.0 is not
available, which is presented with the dash symbols in Table 6. In addition, four bugs (Closure-63,
Closure-93, Lang-2, Time-21) are deprecated in Defects4J 2.0.0, so the related results in each work
are filtered out, respectively.

Compared with three state-of-the-art tools under the intersectional bug collections of six
projects (Chart, Closure, Lang, Math, Mockito, Time), Avatar correctly fixes more bugs than all
three tools and yields a higher probability to generate correct patches among all plausible patches
than HDRepair and JAID (cf., CR(%) in Table 6). All 25 bugs fixed by Avatar are not addressed
by HDRepair, and Avatar also correctly fixes 6 bugs (i.e., Chart-1, Closure-62, Closure-73, Lang-57,
Lang-59, Time-19) that are only plausibly (but incorrectly) fixed by HDRepair. 21 bugs correctly
fixed by Avatar are not addressed by JAID, and 17 bugs correctly fixed by Avatar are not ad-
dressed by SketchFix.

Overall, as illustrated in Figure 19, 18 bugs correctly fixed by JAID, HDRepair, or SketchFix are
not correctly resolved by Avatar. On the opposite, JAID, HDRepair, or SketchFix cannot generate
correct patches for 14 bugs that are correctly fixed by Avatar. Avatar could be complementary
to the state-of-the-art APR tools configured with the restricted fault localization.

In addition, Avatar can generate valid patches for 22 bugs newly added in Defects4J, and 8 of
them are fixed with correct patches. Finally, Avatar partially fixes 16 bugs that have multiple faulty

22We re-executed CoCoNut with the Defects4J and QuixBugs but failed to re-execute it with Bugs.jar and BEARS.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:27

Table 6. Comparison of Avatar with HDRepair [24], JAID [4], and SketchFix [14]

Project HDRepair JAID SketchFix
Avatar

Fully fixed Partially fixed

Chart 0/2 2/4 6/8 7/10 0/2
Closure 0/7 5/11 3/5 5/19 0/1
Lang 2/6 1/8 3/4 2/6 0/1

Math 4/7 1/8 7/8 7/18 1/3
Mockito 0/0 0/0 0/0 2/2 0/1
Time 0/1 0/0 0/1 2/2 0/0
Others∗ − − − 8/22 1/8

Total 6/23 9/31 19/26
25/57

(33/79)∗
1/8

(2/16)∗

CR (%) 26.1 29.0 73.1 43.9 (41.8) 12.5

The results for HDRepair, JAID, and SketchFix are provided by their authors.
∗Others refer to the bugs newly added in Defects4J-v2.0.0 that are not evaluated by APR systems except Avatar, and

the numbers presented in the parentheses include the results for those newly added bugs fixed by Avatar. CR

represents the correctness ratio of valid patches generated by APR tools that are correct [34], the same for Table 7.
∗The number of bugs fixed by Avatar shown in this table is a little different from the data in Table 3. For fixing each

bug, the input of Avatar is a ranked list of suspicious statements in the faulty methods, which is different from the

input of Avatar in the experiments of Sections 6.1 and 6.3.2.

Fig. 19. Relationship of correctly fixed bugs by HDRepair, JAID, SketchFix, and Avatar, respectively.

code fragments, and 2 of the associated patches are manually checked to be correct. Note that,
considering the bugs with multiple buggy positions, due to the limitation of bug-fixing mechanism
of Avatar, Avatar cannot fix the bugs with multiple bug positions of which bug-triggering test
cases are overlapped, but can only fix the bugs with multiple bug positions that are triggered by
independent test cases.

Compared with the results summarized in Table 3 in Section 6.1 where the perfect fault local-
ization is configured, Avatar’s performance falls quickly under the guide of method-level fault
localization results. We analyze the reasons as follows:

(1) In the experiment setting of Section 6.1, we allow Avatar to generate all plausible patches
for a single bug. We aim to fully evaluate the fixing ability of Avatar. However, we focus on
a real-world circumstance here, and Avatar is only allowed to generate one plausible patch
for one bug, where a plausible patch may prevent generating a correct patch.

(2) The inaccuracy of fault localization results will mislead Avatar on the direction of fixing,
which will bias the results. Our experiment shows that Avatar sometimes repairs at lo-
cations without any fault. So, the generated plausible patches are inevitably false positive
ones.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:28 K. Liu et al.

Table 7. Number of Bugs Reported as Having Been Fixed by Different APR Tools

Fault Localization APR Tool Chart Closure Lang Math Mockito Time Others∗ Total CR∗(%)

GZoltar-0.1.1
Avatar

6/11 4/16 2/6 7/24 2/2 0/0 6/24 21/59 (27/83)∗ 35.6 (32.5)
GZoltar-1.7.2 6/11 6/15 1/6 5/18 0/0 0/0 2/17 18/50 (20/67)∗ 36 (29.9)

Normal_FL-based
APR Tools

jGenProg [42] 0/5 2/2 0/2 3/11 0/0 0/0 − 5/20 25.0
jKali [42] 0/4 3/8 2/4 1/9 0/0 0/0 − 6/25 24
jMutRepair [42] 1/4 2/5 0/2 2/11 0/0 0/0 − 5/22 22.7
DynaMoth [6] 0/6 − 0/2 1/13 0/0 0/1 − 1/22 4.5
Nopol [70] 0/6 − 1/6 0/18 0/0 0/1 − 1/31 3.2
Cardumen [43] 2/4 0/2 0/0 1/6 0/0 0/0 − 3/12 25.0
kPAR [29] 3/13 2/10 1/18 4/22 0/0 0/1 − 10/63 15.9
FixMiner [21] 5/14 0/2 0/2 7/15 0/0 0/0 − 12/33 36.4
TBar [31] 7/16 3/12 6/21 8/23 0/0 0/0 − 24/72 33.3
RSRepair-A [76] 0/4 4/22 0/3 0/12 0/0 0/0 − 4/41 9.8
ARJA [76] 1/10 2/29 0/3 3/15 0/1 0/0 − 6/58 10.3
ACS [68] 2/2 0/0 3/3 11/16 0/0 1/1 − 17/22 77.3
SimFix [16] 3/8 7/19 5/16 10/25 0/0 0/0 − 25/68 36.8

APR tools with
Unspecified/

Unconfirmed FL

ssFix [66] 3/7 2/11 5/12 10/26 0/0 0/4 − 20/60 33.3
CapGen [63] 4/4 − 5/5 12/16 − 0/0 − 21/25 84.0
LSRepair [32] 3/8 0/0 8/14 7/14 1/1 0/0 − 19/37 51.4
ELIXIR [56] 4/7 0/0 8/12 12/19 0/0 2/3 − 26/41 63.4
Hercules [57] 6/9 6/8 10/13 21/28 − 3/5 − 46/63 73.0
PraPR [9]∗ 4/14 12/62 3/19 6/40 0/5 1/8 − 26/148 17.6
DeepRepair [64] 0/4 − 4/5 1/5 − − − 5/14 35.7
VFix [69] 6/6 − 5/5 1/2 − 0/0 − 12/13 92.3
ConFix [19] 4/13 6/21 5/15 6/37 − 1/6 − 22/92 23.9
GenPat [15] 3/8 5/7 4/11 3/13 1/2 0/1 − 16/42 38.1
DLFix [26] 5/12 6/10 5/12 12/28 1/1 1/2 − 30/65 46.2

∗PraPR generates plausible patches for 148 Defects4J bugs, and 43 of them can be fixed with correct patches, but 23 of

them are fixed with correct patches that are ranked as the first plausible patch.

6.3.2 Comparison against Normal_FL-based APR Tools. We compare the bug-fixing perfor-
mance of Avatar with the Normal_FL-based state-of-the-art APR tools that are evaluated on the
Defects4J benchmark. These APR tools take as input a ranked list of suspicious statements that are
reported by an off-the-shelf fault localization technique. In this experiment, we consider a group
of APR systems, namely, jGenProg [41], jKali [41], jMutRepair [42], DynaMoth [6], Nopol [70],
Cardumen [43], kPAR [29], FixMiner [21], TBar [31], ARJA [76], RSRepair-A [76], ACS [68], and
SimFix [16], which are re-executed with the same fault localization configuration (i.e., GZoltar-
v1.7.2 and the Ochiai ranking metric) by Liu et al. [34] as Avatar. Thus, we directly excerpt the
related results in their experiments[34] to avoid the potential bias from the different fault localiza-
tion settings [29]. Table 7 reports the comparison results in terms of the number of plausibly fixed

bugs and the number of correctly fixed bugs. Since other tools are evaluated on the earlier version
of Defects4J, the newly added bugs in Defects4J-2.0.0 that are fixed by Avatar are summarized into
the Others column. For Avatar, in the last two columns of Table 7, the numeric values presented
in parentheses include the newly added and fixed Defects4J bugs.

We group the existing program repair tools into three categories by their core approaches:
random-based approaches (i.e., jGenProg, jKali, jMutRepair, ARJA, and RSRepair-A), sophisticated
heuristic approaches (i.e., DynaMoth, Nopol, Cardumen, ACS, and SimFix), and template-based ap-
proaches (i.e., kPAR, FixMiner, andTBar) and illustrate the differences between them and Avatar
on the fixed bugs in terms of Venn graphs presented in Figure 20. Compared against random-based,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:29

Fig. 20. Comparing Avatar with the three kinds of state-of-the-art program repair approaches.

sophisticated heuristic, and template-based program repair approaches, Avatar can correctly fix
16, 9, and 9 new bugs that were not fixed by them before, respectively. Such results indicate that
Avatar could be complementary to the state-of-the-art program repair tools when they are set
with the same fault localization configuration.

We note that Avatar outperforms all of the Normal_FL-based APR systems in terms of both the
number of plausibly fixed bugs and the number of correctly fixed bugs, except T-Bar, ACS, and
SimFix. Here, we claim that TBar considers various fix patterns released by the program repair
community in recent years. Avatar also yields a higher probability to generate correct patches
among its plausible patches than those tools, except FixMiner, ACS, and SimFix. In all, we claim
that Avatar achieves good performance for fixing the Defects4J bugs both in quantity and quality.

Compared with the results in Section 6.3.1, although both experiments use the same fault local-
ization metric, some of the bugs are not correctly fixed in the Normal_FL-based configuration. We
analyze the reasons as follows:

(1) As we have mentioned previously, the experiment in Section 6.3.1 uses only an effective
subset of a suspiciousness ranking list to meet the assumption that method-level fault loca-
tions are known. However, here, we use the whole ranked suspicious list, which could bias
Avatar from fixing the real buggy lines.

(2) Since Avatar generates patches based on the whole suspiciousness list, the quantity of gen-
erated patches may be inevitably huge, especially for bugs with thousands of suspicious
locations. We believe generating patches as many as possible is a waste of resources. So, we
allow Avatar to generate up to 5,000 patches at most. As a result, some of the correct patches
ranked after this threshold because of low suspiciousness in code are ignored by Avatar.

(3) Due to the limitation of fault localization techniques, some bugs fail to be localized by fault
localization tools and consequently do not exist in the suspiciousness list. It is impossible
for Avatar to correctly fix such bugs.

6.3.3 Comparison against with Unspecified/Unconfirmed FL-configured APR Tools. We also com-
pare Avatar against APR systems whose authors do not explicitly describe the actual fault localiza-
tion configuration but still manage to fix bugs that we could not localize with GZoltar-1.7.2/Ochiai.
For example, ELIXIR [56], PraPR [9], and GenPat [15] rely on the Ochiai technique to identify
potential buggy statements, but more details about off-the-shelf fault localization techniques are
not provided. Hercules stated that it uses a spectrum-based fault localization technique to detect
potential repair locations. CapGen [63] applies GZoltar and Ochiai to detect bug positions, but

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:30 K. Liu et al.

the exact version of GZoltar is not clarified. In a recent study, Liu et al. [29] reported that the
different versions of GZoltar present different performance on locating Defects4J bugs. We in-
clude other APR tools in this category that we failed to re-execute them because of the problems
from availability (i.e., APR tool is not publicly available) or executability (i.e., an APR tool is pub-
licly available but cannot be executed as-is for diverse issues, such as the specific configuration
for LSRepair [32] and the online connection for ssFix [66]). Thus, the bug-fixing results for these
APR tools are directly excerpted from their papers.

Overall, Avatar shows a competitive repair performance, comparing with APR tools with Un-
specified/Unconfirmed FL techniques. The compared performance results are illustrated in Table 7.
Although our tool does not completely outperform other tools in this category, it produces compa-
rable or better results than 5 out of 11 APR tools. Due to the differences in fault localization result,
Avatar underperforms other 6 APR tools, such as Hercules, ELIXIR, and DLFIX. This might be
mitigated by applying the same FL setting to our tool. Avatar also shows the best performance
on fixing bugs for Chart and Mockito subjects comparing with other tools in this category.

6.4 Bias from Fault Localization Settings

In APR community, there is a primary challenge faced by practitioners: the plausible patches gener-
ated by APR tools. Qi et al. [53] and Smith et al. [58] reported that the plausible patches generated
by APR tools can make the patched buggy programs pass all test suites, but these patches do not
correctly fix the related bugs as expected by developers or even make the patched programs worse
than the buggy ones. As analyzed by Liu et al. with the empirical study cited in Reference [29],
such plausible patches could be generated by modifying the non-buggy statements that are incor-
rectly identified as the suspicious statements by the corresponding fault localization technique.
And the same APR tools could present different bug-fixing performance when they are configured
with different fault localization settings [34]. Therefore, this section aims at investigating to what
extent Avatar can be affected on bug-fixing performance when it is configured with different fault
localization techniques. As presented in Table 7, when the patch generation process of Avatar is
fed with suspicious bug positions uncovered by different fault localization techniques (i.e., GZoltar-
0.1.1 and GZoltar-1.7.2 in this study) and presents different bug-fixing performances (cf., Table 7)
in terms of the plausibly fixed and correctly fixed bugs as well as the related correctness ratio for
generated patches. It further confirms that the APR tool could be biased by the fault localization
techniques from the aspect of normal program repair pipeline, which is not investigated in the
literature [29, 34].

GZoltar-0.1.1 is the early version of GZoltar, and GZoltar-1.7.2 is the advanced one. However, the
number of bugs plausibly fixed and correctly fixed by Avatar with as well as the related correct-
ness ratio are higher than Avatar with GZoltar-1.7.2. As detailed in Figure 21, with GZoltar-0.1.1,
Avatar can correctly fix 10 bugs that cannot be correctly addressed with GZoltar-1.7.2; only 3 bugs
belong to the opposite situation. From the aspect of the number of fixed bugs, Avatar can benefit
from the early version of GZoltar, although its advanced version can be used to detect more bugs.

We further investigate the efficiency in terms of the number of patch candidates generated by
Avatar to fix each bug with two different versions of GZoltar, of which results are illustrated in
Figure 22. The efficiency of generating patch candidates has been highlighted in a recent work [34]
as one of important aspects to assess APR tools. “Plausible” represents the bugs that are fixed by
Avatar with GZoltar-0.1.1 and GZoltar-1.7.2, respectively. “Correct” denotes the correctly fixed

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:31

Fig. 21. Bugs correctly fixed by Avatar under GZoltar 0.1.1 and 1.7.2, respectively.

Fig. 22. Efficiency of fixing bugs with Avatar under GZoltar-0.1.1 and GZoltar-1.7.2.

bugs with GZoltar-0.1.1 and GZoltar-1.7.2, respectively. While “Correct’” considers the 16 bugs
that are correctly fixed by Avatar using both the versions of GZoltar.

When focusing on the efficiency of generating patches for all plausibly fixed bugs, Avatar with
GZoltar-0.1.1 presents a higher efficiency than Avatar with GZoltar-1.7.2. Nevertheless, when
looking at the correctly fixed bugs and the intersection of correctly fixed bugs, Avatar with
GZoltar-0.1.1 is less efficient than Avatar with GZoltar-1.7.2.

To sum up, the advanced fault localization technique, GZoltar, could not assist Avatar to fix
more bugs than its early version, but it can make Avatar generate correct patches for fixing bugs
in a more efficient way. Therefore, fixing more bugs and fixing bugs in a more efficient way lead
to a tradeoff on selecting fault localization techniques for Avatar to fix real bugs.

6.5 Improving Bug-fixing Performance with Stack Trace Information

Avatar revises suspicious statements in the ranked list exposed in the fault localization process
one-by-one to generate patch candidates until one valid patch is found. It is somehow different
from the manually debugging process. In practice, when a bug arises with the crashed statements
in a stack trace (e.g., the crashed statements of bug Lang-6 shown in Figure 23), developers are
more prone to address these crashed statements than others. The line-05 in Figure 23 indeed is
the buggy statement shown in Figure 24. So, we mimic the manual debugging and apply the stack
trace information to the fault localization of Avatar to assess whether the bug-fixing performance
of Avatar can be improved.

After closely looking at the stack trace information, we observe that three kinds of information
could be used to refine the fault localization results: ① the class targeted by the failing-executed

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:32 K. Liu et al.

Fig. 23. Excerpted stack trace after executing the test cases of bug Lang-6 in Defects4J.

Fig. 24. Developer’s patch for fixing bug Lang-6 in Defects4J.

Fig. 25. Excerpted stack trace after executing the test cases of bug Time-7 in Defects4J.

test case(s) (e.g., the tested class org.joda.time.format.DateTimeFormatter for bug
Time-7 shown in Figure 25), ② the exact code method tested by the failing-executed test case(s) (e.g.,
the method parseInto in the class org.joda.time.format.DateTimeFormatter in
Figure 25), and ③ the crashed statements from the source code of the buggy program (e.g., the
line-05 highlighted with red in Figure 23). Other information is not related to the bug positions,
thus is discarded in this study for refining the fault localization. With the observation, we propose
to refine the fault localization as below: ❶ Prioritize the crashed source code statements (s1)

in the stack trace. It straightforwardly considers that the crashed source code statements in
stack trace have a higher suspiciousness value than other statements, since manually debugging
will first focus on such statements. ❷ Prioritize the statements in the code methods (s2) and

classes (s3) targeted by test cases. It aims to figure out the source code range that is targeted

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:33

Table 8. Comparison on Improved Bug-fixing Performance of Avatar

FL

Setting

GZoltar-0.1.1 + Ochiai GZoltar-0.1.1 + Ochiai + prioritization
fixed bugs correctness ratio # fixed bugs correctness ratio

Avatar 26/82 31.7% (26+2+6)/(82+0+8) 37.8%

Fig. 26. Comparison on the number of patch candidates generated by Avatar with normal and refined FL.

by test cases. In practice, for the convenience of maintenance and the high readability of program
code, developers often write test code for their programs following a canonical naming convention
that names the test classes and test methods with their targeting class and method names (e.g.,
Test*** or ***Test). According to this naming convention, we suppose that the failing test
cases are always associated with the related source code. Therefore, we propose that the statements
in the scope of the methods and classes tested by the failing test cases have a higher possibility to be
faulty than other statements. Overall, we straightforwardly rerank suspicious statements exposed
by GZoltar + Ochiai by prioritizing statements s1, s2, and s3 over other suspicious statements for
the fault localization of Avatar.

Table 8 presents the comparing results23 of Avatar with refined fault localization (refined FL,
i.e., GZoltar-0.1.1 + Ochiai + prioritization) against the normal fault localization (normal FL, i.e.,
GZoltar-0.1.1 + Ochiai). With the refined FL, all of the 26 bugs, which are correctly fixed by Avatar
with the normal FL, still can be correctly fixed. Avatar also correctly fixes 2 bugs that are plausibly
fixed before. The 2 bugs are not accurately localized with the normal FL, which makes Avatar
modify the non-buggy code and generate the plausible but incorrect patches. In addition, Avatar
can (correctly) fix (6) 8 more bugs, as they are correctly located by our refined FL but are failed to be
localized by normal FL. To sum up, the fault localization refined with the stack trace information
makes Avatar fix more bugs with a higher correctness ratio of generated patches.

Looking at the efficiency of fixing bugs in terms of the number of generated patch candi-
dates [34], shown in Figure 26, the efficiency of Avatar is dramatically improved by generating
fewer patch candidates for fixing bugs with refined fault localization than the normal fault local-
ization, since fewer non-faulty statements will be mutated by them to generate the nonsensical/-
plausible patch candidates. Fewer patch candidates will spend less source (e.g., time) for compiling
and testing the patched programs. The results indicate that refining the fault localization with
the stack trace information for Avatar can improve its bug-fixing efficiency by generating fewer
patch candidates and reducing the trials on non-sensical patch candidates.

23In this experimental scenario, only the Defects4J benchmark is used as the evaluation dataset, since Avatar leverages

GZoltar to localize the bug position that relies on the execution traces of passing and failing test cases of each buggy

program. We failed to execute GZoltar on most bugs in Bugs.jar and BEARS, since we failed to compile them because

of different issues (e.g., the unknown JDK version, the unclear configurations, and the unavailable dependencies listed in

their pom.xml file). So, Avatar cannot fix any bugs in Bugs.jar and BEARS in the Normal-FL scenario, since they cannot be

localized. The QuixBugs programs are much simpler than the real-world programs; their bugs can be precisely localized by

GZoltar. The bugs in QuixBugs fixed by Avatar in the Normal-FL scenario are the same as the perfect-FL scenario, thus,

we did not report it in the part.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:34 K. Liu et al.

In the manual debugging process, developers will utilize the exception thrown in the stack trace
to determine the problem causing the bug. We thus explore whether the stack trace information
can be used to match fix patterns in Avatar. To this end, we preferentially match the null pointer-
related fix patterns over other fix patterns of Avatar for the 12 null pointer exceptions bugs that
are fixed by Avatar. The experimental results show that, according to matching the null pointer-
related fix patterns for the bugs throwing null pointer exception, the numbers of generated patch
candidates for fixing each of the 12 bugs are decreased. Overall, the average number of generated
patch candidates is decreased by 746. The efficiency of fixing the null pointer bugs is improved
effectively by matching the related fix patterns with the throwing exceptions in the stack trace.

7 THREATS TO VALIDITY

A threat to external validity is related to the use of Defects4J bugs as a representative set of se-
mantic bugs. This threat is mitigated, as it is currently a widely used dataset in the APR literature
related to Java. The other threat to internal validity is due to the use of Java programs as subjects.
Other static tools, especially for C programs, such as Splint, cppcheck, and Clang Static Analyzer,
are not investigated. What is more, we only considered fix patterns mined from FindBugs and
PMD violations. The other threat to internal validity is with respect to the spectrum-based fault
localization setting of Avatar that requires the targeted buggy programs to have the failed and
successfully executed unit tests for checking execution traces. A threat to construct validity may
involve the perfect fault localization setting to assess Avatar. This threat is minimized by the
other different experiments that are comparable with evaluations in the literature.

8 RELATED WORK

The software development practice is increasingly accepting generated patches [20]. Recently, var-
ious directions in literature have been explored to contribute to the advancement of automated
program repair. One commonly studied direction is the pattern-based (also called example-based)
APR. Kim et al. [18] initiated PAR as a milestone of APR based on fix templates that were man-
ually extracted from 60,000 human-written patches. Later studies [24] have shown that the six
templates used by PAR could fix only a few bugs in Defects4J. Long and Rinard also proposed a
patch-generation system, Prophet [38], that learns code correctness models from a set of success-
ful human patches. They further proposed a new system, Genesis [35], which can automatically
infer patch generation transformed from developer-submitted patches for program repair.

Motivated by PAR [18], more effective automated program repair systems have been explored.
HDRepair [24] was proposed to repair bugs by mining closed frequent bug fix patterns from graph-
based representations of real bug fixes. Nevertheless, its fix patterns, except the fix templates from
PAR, still limit the code change actions at abstract syntax tree (AST) node level, but are not
specific for some types of bugs. ELIXIR [56] aggressively uses method call-related templates from
PAR with local variables, fields, or constants to construct more expressive repair expressions that
go into synthesizing patches.

Tan et al. [60] integrated anti-patterns into two existing search-based automated program
repair tools (namely, GenProg [25] and SPR [36]) to help alleviate the problem of incorrect or
incomplete fixes resulting from program repair. In their study, the anti-patterns are defined by
themselves and are limited to the control flow graph. Additionally, their anti-patterns are not

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:35

meant to solve the problem of deriving better patches automatically, providing more precise
repair hints to developers.

More recently, CapGen [63], SimFix [16], FixMiner [21] are further proposed to fix bugs auto-
matically based on the frequently occurred code change operations (e.g., Inserting IfStatement)
(cf., Table 3 in Reference [16]) that are extracted from the patches in developer change histories.

So far, however, pattern-based APR approaches focus on leveraging patches that developers
applied to semantic bugs. To the best of our knowledge, our approach is the first to investigate the
case of leveraging patches fixing static analysis violations: They are many more, better identifiable,
and more consistent.

9 CONCLUSION

The correctness of APR-generated patches and efficiency are now identified as a barrier to the
adoption of automated program repair systems. Towards guaranteeing correctness and efficiency,
researchers have been investigating example-based approaches where fix patterns from human
patches are leveraged in patch generation. Nevertheless, such ingredients are often hard to collect
reliably. In this work, we propose to rely on developer patches addressing real static analysis bugs.
Such patches are concise and precise, and their efficacy (in removing the bugs) is systematically
assessed (by the static detectors). We build Avatar, an APR system that utilizes fix ingredients
from static analysis violations patches. We empirically show that Avatar is indeed effective in
repairing programs with semantic bugs. Avatar outperforms several state-of-the-art approaches
and complements others by fixing some of the Defects4J bugs that are not fixed by any APR system
in the literature yet. To boost the development of APR, we further investigate the potential reason
why Avatar can address semantic bugs, the bug-fixing performance of Avatar biased by different
fault localization settings, and assess the possibility of utilizing the stack trace information after
the execution of bug-triggering test cases to improve the bug-fixing performance of Avatar. As
future work, we plan to make Avatar to be flexible in addressing new fix patterns and to integrate
with the static analysis tools for resolving program defects automatically.

REFERENCES

[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. Van Gemund. 2007. On the accuracy of spectrum-based fault localization.

In Proceedings of the Testing: Academic and Industrial Conference—Practice and Research Techniques-MUTATION. IEEE,

89–98.

[2] Pavel Avgustinov, Arthur I. Baars, Anders S. Henriksen, Greg Lavender, Galen Menzel, Oege de Moor, Max Schäfer, and

Julian Tibble. 2015. Tracking static analysis violations over time to capture developer characteristics. In Proceedings

of the 37th International Conference on Software Engineering. ACM, 437–447.

[3] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. 2012. GZoltar: An eclipse plug-in for testing and de-

bugging. In Proceedings of the 27th ACM International Conference on Automated Software Engineering. ACM, 378–381.

[4] Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-based program repair without the contracts. In Proceedings

of the 32nd IEEE/ACM International Conference on Automated Software Engineering. IEEE, 637–647.

[5] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019. Empirical review of Java program repair

tools: A large-scale experiment on 2,141 bugs and 23,551 repair attempts. In Proceedings of the 27th ACM Joint Meet-

ing on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM,

302–313.

[6] Thomas Durieux and Martin Monperrus. 2016. DynaMoth: Dynamic code synthesis for automatic program repair. In

Proceedings of the 11th International Workshop in Automation of Software Test. ACM, 85–91.

[7] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014. Fine-grained and

accurate source code differencing. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software

Engineering. ACM, 313–324.

[8] Francesca Arcelli Fontana, Elia Mariani, Andrea Mornioli, Raul Sormani, and Alberto Tonello. 2011. An experience

report on using code smells detection tools. In Proceedings of the 4th International Conference on Software Testing,

Verification and Validation Workshops. IEEE, 450–457.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:36 K. Liu et al.

[9] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program repair via bytecode mutation. In Proceed-

ings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 19–30.

[10] Andrew Habib and Michael Pradel. 2018. How many of all bugs do we find? A study of static bug detectors. In

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM, 317–328.

[11] Sarah Heckman and Laurie Williams. 2008. On establishing a benchmark for evaluating static analysis alert prioritiza-

tion and classification techniques. In Proceedings of the 2nd ACM-IEEE International Symposium on Empir. Softw. Eng.

Measur. ACM, 41–50.

[12] Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. In Proceedings of the 10th Working Confer-

ence on Mining Software Repositories. ACM, 121–130.

[13] David Hovemeyer and William Pugh. 2004. Finding bugs is easy. ACM SIGPLAN Not. 39, 12 (2004), 92–106.

[14] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Towards practical program repair with on-

demand candidate generation. In Proceedings of the 40th International Conference on Software Engineering. ACM, 12–23.

[15] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring program transformations from singular

examples via big code. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineer-

ing. IEEE, 255–266.

[16] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018. Shaping program repair space with

existing patches and similar code. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing

and Analysis. ACM, 298–309.

[17] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of existing faults to enable controlled

testing studies for Java programs. In Proceedings of the 23rd International Symposium on Software Testing and Analysis.

ACM, 437–440.

[18] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic patch generation learned from human-

written patches. In Proceedings of the 35th International Conference on Software Engineering. IEEE, 802–811.

[19] Jindae Kim and Sunghun Kim. 2019. Automatic patch generation with context-based change application. Empir. Softw.

Eng. 24, 6 (2019), 4071–4106.

[20] Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein, Martin Monperrus, and Yves Le Traon. 2017.

Impact of tool support in patch construction. In Proceedings of the 26th ACM SIGSOFT International Symposium on

Software Testing and Analysis. ACM, 237–248.

[21] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein, Martin Monperrus, and Yves Le Traon.

2020. FixMiner: Mining relevant fix patterns for automated program repair. Empir. Softw. Eng. 25, 3 (2020), 1980–2024.

[22] Xuan-Bach D. Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and Corina Pasareanu. 2019. On reliability of patch

correctness assessment. In Proceedings of the 41st International Conference on Software Engineering. IEEE, 524–535.

[23] Xuan-Bach D. Le, Quang Loc Le, David Lo, and Claire Le Goues. 2016. Enhancing automated program repair with

deductive verification. In Proceedings of the International Conference on Software Maintenance and Evolution. IEEE,

428–432.

[24] Xuan Bach D. Le, David Lo, and Claire Le Goues. 2016. History driven program repair. In Proceedings of the 23rd IEEE

International Conference on Software Analysis, Evolution, and Reengineering. IEEE, 213–224.

[25] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012. GenProg: A generic method for

automatic software repair. IEEE Trans. Softw. Eng. 38, 1 (2012), 54–72.

[26] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: Context-based code transformation learning for automated

program repair. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. ACM, 602–614.

[27] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Shin Yoo, and Yves Le Traon. 2018. Mining fix patterns for findbugs

violations. IEEE Trans. Softw. Eng. 47, 1 (2018).

[28] Kui Liu, Dongsun Kim, Anil Koyuncu, Li Li, Tegawendé F. Bissyandé, and Yves Le Traon. 2018. A closer look at

real-world patches. In Proceedings of the 34th International Conference on Software Maintenance and Evolution. IEEE,

275–286.

[29] Kui Liu, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein, and Yves Le Traon. 2019. You cannot fix

what you cannot find! An investigation of fault localization bias in benchmarking automated program repair systems.

In Proceedings of the 12th IEEE International Conference on Software Testing, Verification and Validation. IEEE, 102–113.

[30] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. AVATAR: Fixing semantic bugs with fix

patterns of static analysis violations. In Proceedings of the 26th IEEE International Conference on Software Analysis,

Evolution and Reengineering. IEEE, 456–467.

[31] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar: Revisiting template-based automated

program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.

ACM, 31–42.

[32] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F. Bissyandé. 2018. LSRepair: Live search of fix

ingredients for automated program repair. In Proceedings of the 25th Asia-Pacific Software Engineering Conference ERA

Track. IEEE, 658–662.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair 96:37

[33] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein, and Tegawendé F. Bissyandé. 2020. A critical

review on the evaluation of automated program repair systems. J. Syst. Softw. 171 (2020).

[34] Kui Liu, Shangwen Wang, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang

Mao, and Yves Le Traon. 2020. On the efficiency of test suite based program repair: A systematic assessment of 16 au-

tomated repair systems for Java programs. In Proceedings of the 42nd International Conference on Software Engineering.

ACM, 625–627.

[35] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code transforms for patch generation. In

Proceedings of the 11th Joint Meeting on Foundations of Software Engineering. ACM, 727–739.

[36] Fan Long and Martin Rinard. 2015. Staged program repair with condition synthesis. In Proceedings of the 10th Joint

Meeting on Foundations of Software Engineering. ACM, 166–178.

[37] Fan Long and Martin Rinard. 2016. An analysis of the search spaces for generate and validate patch generation systems.

In Proceedings of the 38th International Conference on Software Engineering. IEEE, 702–713.

[38] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In Proceedings of the 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 298–312.

[39] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan. 2020. CoCoNuT: Combining

context-aware neural translation models using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT

International Symposium on Software Testing and Analysis. ACM, 101–114.

[40] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019. BEARS: An extensible Java bug bench-

mark for automatic program repair studies. In Proceedings of the 26th International Conference on Software Analysis,

Evolution and Reengineering. IEEE, 468–478.

[41] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin Monperrus. 2017. Automatic repair

of real bugs in Java: A large-scale experiment on the Defects4J dataset. Empir. Softw. Eng. 22, 4 (2017), 1936–1964.

[42] Matias Martinez and Martin Monperrus. 2016. ASTOR: A program repair library for Java (demo). In Proceedings of the

25th International Symposium on Software Testing and Analysis. ACM, 441–444.

[43] Matias Martinez and Martin Monperrus. 2018. Ultra-large repair search space with automatically mined templates:

The Cardumen mode of Astor. In Proceedings of the 10th International Symposium on Search Based Software Engineering.

Springer, 65–86.

[44] Matias Martinez, Westley Weimer, and Martin Monperrus. 2014. Do the fix ingredients already exist? An empirical

inquiry into the redundancy assumptions of program repair approaches. In Proceedings of the 36th International Con-

ference on Software Engineering. ACM, 492–495.

[45] Masakazu Matsugu, Katsuhiko Mori, Yusuke Mitari, and Yuji Kaneda. 2003. Subject independent facial expression

recognition with robust face detection using a convolutional neural network. Neural Netw. 16, 5-6 (2003), 555–559.

[46] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury. 2018. Semantic pro-

gram repair using a reference implementation. In Proceedings of the 40th International Conference on Software Engi-

neering. ACM, 298–309.

[47] Naouel Moha, Yann-Gael Gueheneuc, Anne-Fran Duchien, et al. 2010. DECOR: A method for the specification and

detection of code and design smells. IEEE Trans. Softw. Eng. 36, 1 (2010), 20–36.

[48] Martin Monperrus. 2014. A critical review of automatic patch generation learned from human-written patches: Essay

on the problem statement and the evaluation of automatic software repair. In Proceedings of the 36th International

Conference on Software Engineering. ACM, 234–242.

[49] Martin Monperrus. 2018. Automatic software repair: A bibliography. Comput. Surv. 51, 1 (2018), 17:1–17:24.

[50] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013. SemFix: Program repair via

semantic analysis. In Proceedings of the 35th International Conference on Software Engineering. IEEE, 772–781.

[51] Kai Pan, Sunghun Kim, and E. James Whitehead. 2009. Toward an understanding of bug fix patterns. Empir. Softw.

Eng. 14, 3 (2009), 286–315.

[52] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D. Ernst, Deric Pang, and Benjamin

Keller. 2017. Evaluating and improving fault localization. In Proceedings of the 39th International Conference on Software

Engineering. ACM, 609–620.

[53] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch plausibility and correctness for

generate-and-validate patch generation systems. In Proceedings of the 24th International Symposium on Software Test-

ing and Analysis. ACM, 24–36.

[54] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, and Loris D’Antoni. 2018. Learning quick fixes from code repositories.

arXiv preprint arXiv:1803.03806 (2018).

[55] Ripon Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul Prasad. 2018. Bugs.jar: A large-scale, diverse dataset

of real-world Java bugs. In Proceedings of the 15th IEEE/ACM International Conference on Mining Software Repositories.

ACM, 10–13.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

96:38 K. Liu et al.

[56] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. ELIXIR: Effective object-oriented pro-

gram repair. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering. IEEE,

648–659.

[57] Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. 2019. Harnessing evolution for multi-hunk program repair. In

Proceedings of the 41st International Conference on Software Engineering. IEEE, 13–24.

[58] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure worse than the disease? Overfitting

in automated program repair. In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering. ACM,

532–543.

[59] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the validity and value of empirical assessments

of the accuracy of coverage-based fault locators. In Proceedings of the International Symposium on Software Testing

and Analysis. ACM, 314–324.

[60] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury. 2016. Anti-patterns in search-based pro-

gram repair. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering.

ACM, 727–738.

[61] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2018.

An empirical investigation into learning bug-fixing patches in the wild via neural machine translation. In Proceedings

of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM, 832–837.

[62] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009. Automatically finding patches using

genetic programming. In Proceedings of the 31st International Conference on Software Engineering. IEEE, 364–374.

[63] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-aware patch generation for

better automated program repair. In Proceedings of the 40th International Conference on Software Engineering. ACM,

1–11.

[64] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk. 2019. Sorting and trans-

forming program repair ingredients via deep learning code similarities. In Proceedings of the IEEE 26th International

Conference on Software Analysis, Evolution and Reengineering. IEEE, 479–490.

[65] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A theoretical analysis of the risk evaluation

formulas for spectrum-based fault localization. ACM Trans. Softw. Eng. Methodol 22, 4 (2013), 31.

[66] Qi Xin and Steven P. Reiss. 2017. Leveraging syntax-related code for automated program repair. In Proceedings of the

32nd IEEE/ACM International Conference on Automated Software Engineering. IEEE, 660–670.

[67] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018. Identifying patch correctness in test-

based program repair. In Proceedings of the 40th International Conference on Software Engineering. ACM, 789–799.

[68] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu Zhang. 2017. Precise condition

synthesis for program repair. In Proceedings of the 39th IEEE/ACM International Conference on Software Engineering.

IEEE, 416–426.

[69] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: Value-flow-guided precise program repair for null

pointer dereferences. In Proceedings of the 41st International Conference on Software Engineering. IEEE, 512–523.

[70] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lamelas Marcote, Thomas Durieux, Daniel

Le Berre, and Martin Monperrus. 2017. Nopol: Automatic repair of conditional statement bugs in java programs. IEEE

Trans. Softw. Eng. 43, 1 (2017), 34–55.

[71] Jifeng Xuan and Martin Monperrus. 2014. Learning to combine multiple ranking metrics for fault localization. In

Proceedings of the IEEE International Conference on Software Maintenance and Evolution. IEEE, 191–200.

[72] Jifeng Xuan and Martin Monperrus. 2014. Test case purification for improving fault localization. In Proceedings of the

22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 52–63.

[73] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells? An exploratory survey. In Proceedings

of the 20th Working Conference on Reverse Engineering. IEEE, 242–251.

[74] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better test cases for better automated program repair.

In Proceedings of the 11th Joint Meeting on Foundations of Software Engineering. ACM, 831–841.

[75] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2019. A comprehensive study of automatic program

repair on the QuixBugs benchmark. In Proceedings of the 1st International Workshop on Intelligent Bug Fixing. IEEE,

1–10.

[76] Yuan Yuan and Wolfgang Banzhaf. 2018. ARJA: Automated repair of Java programs via multi-objective genetic pro-

gramming. IEEE Trans. Softw. Eng. 46, 10 (2018).

Received 1 June 2021; revised 3 August 2022; accepted 19 November 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 96. Publication date: May 2023.

