JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 175-200 (2019)
DOI: 10.6688/JISE.201901_35(1).0010

Cost-Aware Clustering of Bug Reports
by Using a Genetic Algorithm*

JAEKWON LEE!, DONGSUN KIM?> AND WOOSUNG JUNG*
'Department of Computer Engineering
Chungbuk National University
Cheongju, 28644 South Korea
Interdisciplinary Centre for Security Reliability and Trust
University of Luxembourg
Kirchberg, 4365 Luxembourg
*Graduate School of Education
Seoul National University of Education
Seoul, 06639 South Korea
E-mail: exatoa@cbnu.ac.kr'; dongsun.kim@uni.lu*; wsjung@snue.ac.kr®

The inefficient distribution of bugs to developers is increasing the cost of software
development and maintenance. In efforts to tackle this issue, various studies have been
carried out to recommend suitable developers for specific bugs. These studies often lev-
erage similarity between bug reports; for example, if a developer addressed a bug report
similar to a newly incoming report, that developer can be suitable to fix the bug de-
scribed in the new report. However, the existing studies have resulted in imbalanced dis-
tribution — a large number of bugs can be concentrated in a small number of developers.
In this paper, we propose a novel approach to achieve a cost-aware distribution of bug
reports to support workload balancing. Our approach is composed of two phases. First, a
set of similar report groups composed of strongly related bugs is generated based on their
similarity and dependency. Clusters are then created by grouping the similar report
groups so that each cluster can have similar cost (i.e., minimizing its standard deviation).
Our approach leverages a genetic algorithm to find a near-optimal distribution of bug
reports because it is an NP-hard problem. The experiments with 1,047 bug reports col-
lected from Mozilla’s Firefox were conducted to evaluate our approach. The results
showed that our approach effectively provides an appropriate solution to achieve a cost-
balanced distribution of bug reports. In addition, we carried out a user study targeting 30
developers from 15 companies to figure out the usefulness and effectiveness of our ap-
proach. Among the participants, 67% answered that our approach is useful for triaging
their bugs to developers. This shows the possibility for use in cases of managing or tri-
aging bugs from the project manager’s perspective.

Keywords: bug report, mining software repositories, bug triage, genetic algorithm, as-
signment optimization

1. INTRODUCTION

The number of bugs in software projects is increasing, and they are overwhelming
developers and maintainers. According to Shokripour’s research [1], more than 300 new
bugs are added to the Mozilla project per day. It is thus becoming harder for bug triagers

Received October 2, 2017; revised November 20, 2017; accepted December 28, 2017.

Communicated by Shyi-Ming Chen.

" This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (Ministry of Science, ICT & Future Planning) (No. 2015R1C1A1A01054994).

* Corresponding author.

175

176 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

to distribute the bug reports to developers properly and in a cost-effective manner. To
support the maintenance process, ITS (Issue Tracking System) is used to manage bugs
effectively [2]. However, with regard to the issue of the distribution bugs, ITS accompa-
nies problems from the perspective of workload balancing and the manual triaging pro-
cess.

One of a bug triager’s important tasks is to assign bugs to appropriate developers.
When a new bug is reported, the triager checks if it is a duplicate bug with previously
reported bugs. It is then validated in terms of whether it contains wrong information or it
is reproducible. Finally, the bug is assigned to a developer who is considered the most
qualified handler for it. However, this process is tedious and can increase the cost of fix-
ing bugs because triagers should manually deal with the reports [3].

Researchers thus have proposed various methods to find the most suitable develop-
ers to fix given bugs, based on bug assignment histories collected from ITS [1, 4-7]. For
example, Cubranic and Murphy [4] proposed suitable developers recommendation ap-
proach utilizing history information how those developers handled similar bug reports.
They achieved 30% accuracy on the Firefox project by recommending 5 developers.
However, most of researchers focused on the issue of finding a suitable developer for a
specific bug, not considering the overall cost of tackling the bug reports or a balanced
distribution from the assigner’s perspective.

This could delay the project schedule and eventually increase the overall develop-
ment cost. Developers who newly join a project are rarely assigned to fix bugs because
they have no history data in the repositories. Furthermore, the estimated cost simply
based on history data is not precise. Notably, the precision of semi-automated triaging [1]
decreased to 50% in a case in which only one developer was recommended. Pack et al.
focused on reducing the cost rather than increasing the precision of triaging [8]. However,
they only used the developer’s bug-holding time as their cost, which could include bug-
tossing [3] time or doing-nothing time as well.

We thus analyzed developer’s workload assuming that often a large proportion of
bugs are assigned to a small number of specific developers. We extracted all bug reports
of the Firefox project, and then compared the ratio of bugs that were being fixed by ac-
tive developers (which are the top 10% of developers when sorting them according to the
number of reports assigned). The results showed that more than 50% of the bugs were
assigned to the top 10% of the active developers on average. For the worst case, more
than 80% of the bugs were assigned to the top 10% of active developers. Finally, we re-
alized that there is an imbalanced distribution of bug reports.

In this paper, we propose a GA-based approach to achieve a cost-aware optimal dis-
tribution of bugs to support cost-balanced triaging. We defined the repository schema for
the bug reports, and then implemented a set of tools to extract, analyze, and generate
clusters of bugs for a given number of developers. The clustering process is composed of
two phases. The first phase is generating similar report groups (SRGs) that are composed
of strongly related bugs that are considered to have high similarity or dependency. Thus,
they are not split into different groups in the next phase of clustering. The second phase
is to generate clusters based on the total costs of the SRGs. In this phase, the standard
deviation of the cluster’s cost is used as a fitness of our optimization process.

In short, our approach entails finding a near-optimal distribution of the given bugs,
which the distribution enables a cost-balanced assignment from the manager’s point of

COST-AWARE CLUSTERING OF BUG REPORTS 177

view. Our method is thus effective when assigning a massive number of bugs to a devel-
opment team in a cost-balanced manner.

Additionally, our method does not depend on the history data of the repositories,
which also differentiates it from previous approaches that use such data for cost estima-
tion [8, 9]. Thus, our approach can be applied for any given set of bug reports. Based on
the document readability [10], we also defined a reading cost metric to calculate the
reading cost of the bugs. The cost metric can be easily enhanced without changing the
framework of the proposed method. The results of optimization demonstrate the effec-
tiveness of our approach by showing that the standard deviation of the final bug clusters’
cost can reach below 0.07. We received 67% positive responses to our approach from
developers who participated in a survey.

We can summarize the contributions of our research as follows:

o A near-optimal assignment of bugs to a group of developers can be conducted via the
concept of load balancing.

® A novel cost metric to comprehend a set of bug reports is defined by considering simi-
larity and dependency of bug reports.

¢ A methodology including overall schema and process is provided in the case of man-
aging or triaging bugs from the project manager’s perspective.

The remainder of this paper is organized as follows. Section 2 describes the motiva-
tion of our research with the analyzed distribution data of bugs in open source projects.
Section 3 describes related work. Section 4 presents the assumptions of our research and
formally defines the balanced distribution of bug reports. Section 5 explains in detail our
approach to generate balanced clusters of bug reports. Section 6 shows the results of ex-
periments to evaluate the usefulness and effectiveness of our method and discusses our
research including threats to validity. Finally, section 7 provides our conclusions.

2. MOTIVATION

Contemporary software projects including open source software (OSS) often em-
ploy issue tracking systems to efficiently deal with issues such as bugs and feature re-
quests. Users can submit bug reports to the system when faced with abnormal behaviors
on a software. The submitted bug reports are assigned to developers by a triager (e.g.,
product manager). Triagers of OSS projects often assign bug reports based on developer
expertise [5].

However, bug report assignment can be easily imbalanced. Jeong et al. [3] stated
that a few developers can take too many bug reports after a small number of report toss-
ing. This imbalanced distribution may delay overall software development since this can
impose an excessive burden on a few developers. In particular, this problem can be more
serious because more than 300 bug reports are filed every day in many recent OSS pro-
jects [1].

To determine whether an imbalanced distribution occurs in OSS projects, we inves-
tigated bug reports of Mozilla Firefox'. We collected 142,217 bug reports from Mozilla’s
issue tracking system from the beginning of the project to August 31, 2014. For each bug

T https://bugzilla.mozilla.org/

178 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

report, we examined changes in status and assignee fields.
Since some bug reports do not follow normal status transitions [2, 11] and change
assignee, we collected status transitions based on the following rules:

e Rule 1: A user who changed the status into ASSIGNED is the assignee when no as-
signee information is provided.

e Rule 2: A user who changed the status into RESOLVED when no assignee information
is provided.

o Rule 3: The last value of the assignee field is regarded as the actual assignee. Previous
assignees and status changes are not used.

e Rule 4: If two different users changed the status of a single report into ASSIGNED and
RESOLVED, respectively, the user who changed it into RESOLVED is regarded as the
assignee.

e Rule 5: If no explicit ASSIGNED status is provided while the assignee field is available,
the creation time of the bug report is regarded as the assigned time.

e Rule 6: If there is no explicit RESOLVED status, a user who changed the status into
VERIFIED or CLOSED is regarded as the assignee.

We examined how many bug reports are assigned and owned by each developer.
For each developer, we counted two numbers: (1) the number of reports that are newly
assigned and (2) the number of reports that are being processed, respectively. Since our
focus is on figuring out whether a few developers assume an imbalanced workload with-
in a specific period rather than the entire life cycle, we investigated bug reports within a
four-week window, as shown in Fig. 1. We slid this window by one week.

Sliding Window Bug Report
Life Time
for A Developer

N-3 N-2 N-1 N N+l

Time (week)

Fig. 1. Inspection of the number of bug reports for a certain developer within a sliding window
(number of assigned bug reports = 7, the number of held bug reports = 9).

Fig. 2 shows the proportion of bug reports newly assigned to developers. We split
the developers into two groups: (1) top 10% and (2) other 90%, after sorting them ac-
cording to the number of reports assigned. As shown in Fig. 2 (a), on average more than
60% of bug reports were assigned to the top 10% of developers. Since there might be
many highly inactive developers in the 90%, we split the 10% again into two subsets of
10 & 90% and examined the distribution. The results are shown in Fig. 2 (b). For active
developers, more than 50% of reports were assigned to the top 10% of developers on aver-
age. This implies that the current practice distributes reports in an imbalanced manner.

COST-AWARE CLUSTERING OF BUG REPORTS 179

100%
>
80% Rest
70%
60%
50%
40%
30%

100%
80% Rest
70%
60%
50% |

40%
30% -

Rate (%)
Rate (%)

20% 20%
10% 10%
0%

2002-08 V 200;—08 ‘ 200‘6-08 V 200‘8-08 V 201;}-08 V 201;—08 . 201:1—08 o:‘oo‘z.os 200.4.03 200’5,03 200;;.03 201;)-08 101‘2.03 201;.03
Time (week) Time (week)
(a) Two groups of developers in all developers. (b) Two groups of developers in top 10% dewvelopers.
Fig. 2. Rate of assigned bug reports into two groups after sorting them according to the number of
reports assigned each week from August 2002 to August 2014 (window size = 4 weeks,

sliding unit = 1 week).

Table 1. Bug resolution time between the top 10% at least once and the rest of develop-
ers (based on the results of Fig. 2 (b)).

Count of | Count of Resolved | Total Elapsed Average Elapsed Time
Developers Bugs Time (day) per a Bug (day per a Bug)
Top 10% 134 95,119 19,135,767 201.2
Rest 170 14,612 2,050,431 140.3
Top 10% / Rest 0.8 6.5 9.3 14
100%

Rate (%)

90%
80%
70%
60%
50%
40%
30%
20% -

| mTop 10% |
10% Rest

0% : . ' ' . ') . '
2002-08 2004-08 2006-08 2008-08 2010-08 2012-08 2014-08
Time (week)

Fig. 3. Rate of held bug report each week from Aug 2002 to Aug 2014 (window size = 4 weeks,
sliding unit = 1 week).

In addition, we investigated the number of reports that each developer held within a
window. If the top 10% of developers can resolve bugs faster than others, they would
hold numbers of reports similar to those of other developers. However, it turned out that
the top 10% of developers held more than 40% of reports on average, as shown in Fig. 3.
This is not significantly different from the results shown in Fig. 2.

This imbalanced distribution affected the bug resolution time. We examined bug
reports resolved by developers who had been involved in the top 10% at least once and
the rest of developers (based on the results shown in Fig. 2 (b)). We then measured the
time between the assignment and resolution for each bug report. Table 1 shows the re-
sults. The top 10% of developers resolved 6 times more reports than other developers and
spent 9 times longer time for them. For each report, the top 10% of developers spent 1.4
times longer time than others. This indicates that the top 10% developers may have an
excessive burden to resolve bugs on time.

180 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

More than 60% of bug reports are assigned to 10% of developers on aver-
age while they spend 1.4 times longer time to resolve the reports than other
developers.

Based on the above observations, in this paper we present a novel approach, CBAC
(Cost-aware BAlanced Clustering), to balance the distribution of bug reports. This ap-
proach takes the reading cost of each bug report into account and uses a genetic algo-
rithm to achieve a balanced distribution of reports.

3. RELATED WORK
3.1 Triaging Bug Reports

There have been various studies related to bug assignment or triaging. These studies
initially focused on finding suitable developers by using triaging histories on who had
handled what bug reports in the past.

Cubranic and Murphy proposed a semi-automatic bug triaging method [4] inspired
by Fischer’s research to extract the software features from code history and a set of bug
reports [12]. They transformed textual summaries and descriptions into computable fea-
ture-vectors based on TF-IDF. The vectors being mapped to the bug assignees were then
classified by using the naive Bayesian technique. The experimental results showed 30%
accuracy in triaging the bug reports of the Eclipse project.

Anvik et al. proposed a novel technique [5] using the support vector machine algo-
rithm to improve the previous semi-automatic triaging [4]. They used a heuristic approach
to build a word-vector from bugs and labeled them with related developers. The precisions
of the algorithm applied to Eclipse and Firefox were 57% and 64%, respectively, which
were 4~20% higher than in previous cases.

On the other hand, Matter er al. focused on extracting developer expertise from
source codes to enhance the bug triaging process [13]. To represent developer expertise,
they created a term-author matrix by extracting bag of words from all source code histo-
ries. The temporal decay was also considered by diminishing the weight of expertise as
time passed since the code had been changed. When they have a new bug report, they
build a term-vector of the bug report and compare it with the term-author matrix. Their
approach showed 33.6% top-1 precision and 71% top-10 recall.

Bhattacharya extended Jeong’s tossing graph [3] to exclude inactive developers by
considering the period of their activeness [14]. Comparison experiments with various
machine learning algorithms were conducted to find the best solution to bug assignment,
naive Bayes showed 86% accuracy.

Shokripour et al. proposed a two-phased location-based triaging method [1] to re-
solve this problem. They built a weighted noun-index using simple terms in order to pre-
dict the location of each bug and assign a proper developer. Their method showed 89%
and 59% precisions for JDT and Firefox, respectively, a 70% improvement over the pre-
vious approach [15].

However, most of them focused on the issue of finding a suitable developer for a

COST-AWARE CLUSTERING OF BUG REPORTS 181

specific bug, not considering the overall cost of tackling the bug reports or a balanced
distribution from the assigner’s perspective. As a result, it is difficult to provide a fully
automated solution to those problems.

3.2 Cost Estimation of Handling Bug Reports

There have been several studies on estimating the cost of handling bug reports.
Weiss et al. estimated the modification time of a newly given bug by using the average
time previously to have similar bugs fixed [9]. Their approach showed 30% precision for
the JBoss data. However, the method was only applicable for systems capable of record-
ing the effort history.

Park et al. proposed a solution to this issue by considering the developer’s bug-fix-
ing cost [8]. The purpose of their work was to minimize the fixing cost and maximize the
triaging precision at the same time. Their approach showed that a 10% decrease of the
precision could cut the total fixing cost in half for open source projects such as Apache,
Eclipse, Linux Kernel, and Mozilla. Their research showed the importance of a cost-
balanced distribution of bugs in triaging. However, the time gap between bug-assigned
time and bug-resolved time was considered as the fixing cost for a bug.

Xiao and Afzal also utilized the estimated effort to fix bugs to tackle bug reports
with GA-based scheduling in the software testing phase [16]. They also defined models
for the bug report and for the developer with fundamental information such as required
skill, competency, experience, and workload. However, this required manual evaluations
for all data in order to predict the fixing cost of each bug.

In most approaches, the time difference between the time of a bug being assigned
and it being fixed was considered as the cost of the bug. For these approaches, however,
It is necessary to acquire the fixing history of similar bugs, and it is difficult to estimate
the cost of bug reports with short-term history. From this point of view, our approach
uses the size, difficulty, and similarity of the documents to predict the cost of bugs.

3.3 Grouping Similar/Duplicate Bug Reports

Several studies have been conducted to detect bug reports describing the same pro-
blem, not only because duplicate bugs can compensate for insufficient information but
also because they can confuse developers and lead to inefficiency [17]. Runeson et al.
studied the detection of duplicate bug reports based on natural language processing for
the first time [18]. They extracted summaries and descriptions from open source projects,
and then generated a feature-vector based on TF-IDF. The cosine similarity algorithm
was used to compare the similarity between each pair of bugs and a time frame was given
to reduce the number of bugs to be compared. By investigating the top 5 high similarity
bugs, they found 30% duplicate bugs Sony Ericsson’s project.

Wang et al. extended Runeson’s method [18] and improved the accuracy of the du-
plicate bug detection algorithm by using execution information as well as natural lan-
guage data [19]. In particular, the execution information was a better source for detecting
similar internal behaviors of defects than a text-based description, which was limited in
terms of representing their external behaviors. Wang’s approach showed better accuracy
than Runeson’s for the Eclipse and Firefox projects.

182 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

Sun et al. used an SVM-based machine learning algorithm to train a model using
duplicate and non-duplicate pairs of bugs extracted from a repository [20]. Their experi-
ment to recommend the top 5 duplicated bugs showed 50% recall for the Eclipse, Firefox,
and OpenOffice projects. However, no obvious improvement was found in the case of
excluding manually tagged information.

Nguyen et al. used the Latent Dirichlet Allocation as well as a text-based retrieval
technique to detect duplicate bugs expressed in different terms [21]. They defined a topic
model based on LDA, and combined it with BM25 to resolve the issue. The results of
recall applying DBTM to the Eclipse project were 57%, 76%, and 82% for the top-1,
top-5, and top-10 recommendations, respectively. These results were 20% higher than
previous methods [22]. Somasundaram and Murphy used the Latent Dirichlet Allocation
with Kullback-Leibler divergence to correctly assign bug reports that had been catego-
rized into the wrong components [23]. Zhang and Lee grouped bug reports that had been
included in the same component. They then compared the bug reports located in the same
group to detect duplicate bugs [24].

Several approaches applied machine learning techniques based on similarity metrics
to find duplicate bugs. In order to apply the machine learning techniques to duplicate
bugs, the number of clusters or training sets should be provided. To address these con-
straints, we adopted threshold values for the similarity metric to group them into undi-
vided SRGs. We also considered fuzzy inference that is utilized for document clustering
[25], temperature prediction [26], and forecasting enrollments [27] to detect duplicate
bugs. However, we chose a simple similarity algorithm based on TF-IDF because of their
complexity.

3.4 Optimization Algorithms

There are many approaches to find optimal solutions such as Simulated Annealing
[28], Ant Colony Optimization [29], Genetic Algorithm [30, 31], and fuzzy-related algo-
rithms [32-35]. Since finding a solution from optimization problem is too complex to
compute all the possible cases, these algorithms are used to obtain the near-optimal solu-
tion instead of the real-optimal solution.

Simulated Annealing [29] is a global search algorithm that mimics the physical an-
nealing of solids. It starts from a random position and moves toward the optimal solution
progressively. Jumping to a far distance from a current optimal solution with a small
probability is used to prevent the algorithm from falling into local optimization.

Ant Colony Optimization [30] is a global search algorithm that mimics the way how
ants find food. The initial goal was to find the optimal path in a graph. The algorithm
moves randomly to the direction of a target node. When it reaches the target node, it
moves back to the start node with the pheromone. After the several iterations, the best
pheromone intensity path will be selected to determine the optimal solution. This ap-
proach is used as a global search algorithm in various fields such as routing [36] and
scheduling [37].

Genetic Algorithm [31] is one of the evolutionary algorithms that is inspired by the
process of natural selection. It creates a population that is an initial set of solutions and
evolves the population through operators such as crossover, mutation, and selection itera-
tively. This process provides an effective way to find globally optimal solutions by keep-

COST-AWARE CLUSTERING OF BUG REPORTS 183

ing wide-range of candidates in a set of solutions. To apply the Genetic Algorithm, it is
not only necessary to be able to convert a solution of the problem into a chromosome but
we also need to define a fitness function to evaluate the solution.

4. COST-AWARE BUG REPORT CLUSTERING

This section defines a balanced clustering problem of bug reports with respect to the
cost of the bugs. As described in section 2, the overall defect resolution can be delayed if
bug reports are assigned to developers in an imbalanced manner. It is thus necessary to
efficiently distribute bug reports to developers so that they can spend similar amounts of
time in resolving bugs.

In this paper, it is assumed that a balanced bug distribution is necessary from the
perspective of production managers. If a few developers take too many bugs, vulnerabil-
ity to production delay is greatly increased. Thus, bug triagers should focus on balancing
the cost of bugs assigned to each developer. A balanced distribution can have a higher
priority than expertise matching. Otherwise, there will be increased vulnerability to de-
layed project releases.

Our goal is to distribute bug reports to each developer in a balanced way based on
the assumption described above. To formally define this problem, it is necessary to clar-
ify several concepts in the bug assignment process. For a given n number of bug reports
and m number of developers, which should be the same as the number of clusters to be
generated, let B = {by, b,, ..., b,} be a set of the bug reports. Bug assignment can be de-
termined by the n-dimensional vector:

a={aj,a, ..., a, (1

where g; is an index of a cluster to which a bug report b; belongs (1 <i<n, 1 <a; <m).
Then, a cluster with an index j, which is actually a set of bug reports, can be defined as
¢,; (1 <j<m) for an assignment a.

Let C, = {Ca1, Ca2» ---» Cam} b€ a set of clusters made by an assignment a4, where
A is a universal set of assignments. Each bug reports are assigned to clusters. Later, each
cluster will be assigned to a certain developer for a balanced report distribution.

For a certain assignment a, it is necessary to compute the total cost of assigned bug
reports for each cluster. Let Costg be a function defined to compute the cost of bug re-
ports as follows:

Costg: B —> R. 2)

Based on Costs, the total cost of bug reports in cluster c,; for a certain assignment a
can be defined as:

Cost(c,)= | Cost, (b). 3)

bec, ;

The cost of a set of bug reports is not just the sum of each bug report’s costs because
of their similarity and dependency. The details related to this issue are described in sec-

184 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

tion 5.

Our goal is to minimize deviation of estimated effort to fix bugs among developers.
As shown in Eq. (4), it is necessary to find an optimal and balanced distribution a,,, in
the set of assignments 4 when dividing » reports for m developers.

a,, =arg rilin o {Cost.(c,)} @)

Finding a, is a combinatorial optimization problem and its computation complexity
class is NP-hard and intractable. For example, the number of cases to assign 20 docu-
ments to 5 developers is simply calculated as 5°° which is greater than 90 trillion. A me-
ta-heuristic approach such as genetic algorithm provides effective optimal solutions for
such complex problems. Therefore, local search techniques may not be suitable for this
problem. In section 5, this paper presents a novel approach to balanced clustering of bug
reports for a given set of developers.

5. APPROACH

This section describes our approach, CBAC (Cost-aware BAlanced Clustering), to
cost-aware bug report clustering.

Grouping Computing Clustering {

similar reading using
reports cost enetic
algorithm Balanced
clusters

Fig. 4. Overview of our approach, CBAC (Cost-aware BAlanced Clustering).
5.1 Overview

CBAC is an approach to achieve cost-aware bug report clustering, as described in
section 4. This approach leverages a genetic algorithm to find balanced clusters of bug
reports for a given number of developers. This process prevents a few developers in a
project from being overwhelmed by a large number of bug reports.

As shown in Fig. 4, CBAC has three sub-tasks. First, it measures the similarity of
bug reports and groups similar reports together. It then computes the reading cost of in-
dividual bug reports and report groups. After obtaining the reading cost, the approach
leverages a genetic algorithm to cluster bug reports with respect to a balanced distribu-
tion of cost.

CBAC uses only the summary (i.e., title) and description of a bug report. These
fields contain the initial information for a given bug that the reporters are faced with.
Since the goal of this paper is to obtain balanced clusters of bug reports with respect to

COST-AWARE CLUSTERING OF BUG REPORTS 185

reading cost rather than achieving better report assignment, we focused on textual infor-
mation.
The remainder of this section describes the tasks of CBAC in detail.

5.2 Bug Report Reading Cost

To compute the cost of a given bug report, CBAC uses the document reading cost.
This cost represents the effort to understand a specific document. Since bug reports are
documents written in natural languages, reading and understanding bug reports take a
significant amount of debugging effort. Thus, reading cost can be an effective indicator
for measuring the cost of a bug report.

Our approach uses three metrics to calculate the reading cost of a bug reports: (1)
word difficulty; (2) sentence complexity; and (3) document length. First, difficult or un-
familiar words can increase the cost of document reading since a document reader may
need to search in a dictionary or on the web for the concept of the words. Complex sen-
tences can make a reader take more time to understand the document. In addition, the
size of a document (e.g., the number of words or sentences) may inherently increase the
effort needed to read and understand it.

To compute the word difficulty and sentence complexity, this approach uses the
Flesch-Kincaid equation [10]. This equation improves Flesch Reading Ease [38]. The
United States Department of Defense uses this equation to evaluate its documents [39].
As shown in Eq. (5), the Flesch-Kincaid equation measures the reading cost of a docu-
ment b (i.e., a bug report in this approach) by using the following two terms: (1) the av-
erage number of syllables in words to compute word difficulty and (2) the average num-
ber of words in sentences to compute sentence complexity.

FK(b) _ 039(word _count(b))+11‘8(Syllableic0unt(b))_15'59 (5)

sentence _count(b) word _count(b)

CBAC defines the reading cost for a document b as Costg(b) based on the Flesch-
Kincaid equation and document size (the number of words) as shown in Eq. (6). Costz(b)
is a product of the Flesch-Kincaid value and the number of words in a document b. We
set the coefficient of the first term to 10~ since 10 is the minimum level of readability for
ordinary documents based on the US government requirements [40]. As FK(b) yields [0,
20], it is normalized into [1, 3]. Similarly, the approach normalizes the second term (i.e.,
document size) by 100 so that it will not dominate the first term.

Cost,(b) = (F\ 4 y(2erdcontib)y o

5.3 Grouping Bug Reports

CBAC groups similar bug reports together before clustering the reports. Reading
similar documents can reduce reading cost; after reading a bug report, the reading cost of
another similar report can be lower than the cost of understanding the report indepen-
dently. Thus, it is necessary to put similar bug reports into a group.

186 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

5.3.1 Bug report similarity

To compute the similarity of a pair of bug reports, CBAC leverages the Vector
Space Model (VSM) [41]. This approach transforms text in a bug report (title and de-
scription) into a vector. The vector consists of TF-IDF (term frequency-inverse document
frequency) [42] values of each word in the bug report; this is computed by Eq. (7). Let ¢
be a term used in report b. #f(z, b) is the scaled frequency of the raw term frequency f(¢, b).
B is a set of bug reports and N(¢, B) is the number of documents in which the term ¢ ap-
pears. idf(t, B) is the inverse document frequency of the term ¢ in B. tfidf(¢, b, B) is the
TF-IDF value of the term ¢ in the report beB.

i (t,b) =1+log f(1,b)

idf (t,B) =1+log 7 (7
ofidf (1,b,B) = 1f (¢,b)-idf (1, B)

Cosine similarity is used to compute the similarity between reports. CBAC performs

a pair-wise comparison between all bug reports to determine similar report groups
(SRGs). Eq. (8) shows the similarity equation used in our approach:

Sim(V,.V.) = i ®)
where V., is a term vector (its elements are computed using Eq. (7)) of bug reports.

CBAC uses the similarity values to identify SRGs. The approach defines a threshold
value when identifying report groups. Once a subset of bug reports is classified into an
SRG, it is dealt with by single developers so that the reading cost will be reduced.

To determine an appropriate threshold value, we conducted a preliminary user study.
In this study, we asked five developers whether a specific threshold is effective to iden-
tify SRGs. For this study, we collected 1,047 bug reports of Mozilla Firefox submitted
from July 1, 2013 to July 30, 2013. We then computed the pair-wise similarity of the
reports. Among these reports, we selected 41 pairs of similar bug reports in which their
similarity values were higher than 0.5.

We provided the pairs to the five developers and asked them to evaluate the effec-
tiveness of each pair with respect to reducing reading cost. The effectiveness was evalu-
ated by the five-level Likert scale as shown in Table 2.

Table 2. Likert scores to determine appropriate threshold.

Likert Score Description
Very Helpful
Helpful
Normal
Rarely Helpful
Never Helpful

—_— N W kA~ W

Fig. 5 shows the results of the similarity evaluation. The X-axis represents threshold
values (for each 0.01 unit) and the Y-axis is the ratio of each answer shown in Table 2.

COST-AWARE CLUSTERING OF BUG REPORTS 187

We supposed that report pairs with scores of 4 and 5 were positive to be dealt with to-
gether by a single developer. Based on the results, we selected 0.86 as the threshold walue
for report grouping since this value indicates that at least 90% of report pairs received
more than a score of 4 according to the results shown in Fig. 5.

100%
90%
8

70%

6

50%

40%

30%

20%

10% 1m2 m3 m4 m5
0% NI

050 055 060 065 070 075 080 085 090 095 1.00
Similarity

g

g

Fig. 5. Results of similarity as evaluated by developers.

5.3.2 Similar report groups and their reading costs

Once CBAC computes pair-wise similarity of bug reports, the approach put similar
reports into a group. First, the approach builds a graph in which bug reports are nodes.
Edges can be defined between a pair of bug reports (b, and b,) if Sim(V3,, V;,) > 0.86.
After connecting the nodes by edges, the approach identifies cliques (i.e., SRGs) in the
graph; these SRGs are the unit of clustering.

Since reading similar bug reports together may take less time, it is necessary to re-
define the reading cost metric of bug reports in a group rather than computing the sum of
the cost of all bug reports. CBAC uses a maximum spanning tree algorithm [43] to com-
pute the reading cost of a report group. The algorithm identifies the minimum number of
edges with maximum values (here, similarity), that connects all nodes in the group with-
out any cycle.

After identifying the spanning tree of an SRG g, the approach uses Eq. (9) to com-
pute the reading cost of the SRG. Let g be a set of reports {by, by, ..., by}:

Cost;(g)= Y. Costy(b)~ Y, Sim(b,,b,)xmin{Cost,(b),Cost,(b,)})

beg (b ,bjeg)A(i<j)

where min{x, y} returns the minimum value between x and y (x, yeR).

Finally, because these SRGs are the unit of clustering, c,; can be re-defined as a set
of SRGs: {g1, g, ..., g}. This makes it easier to calculate the reading cost of cluster c,;.
Therefore, the total cost of bug reports in cluster c,; for a certain assignment a can be
re-defined as:

Cost.(c, ;)= Y, Costy(g). (10)

g EC" o)

Fig. 6 shows three groups of bug reports, among which groups (a) and (b) have the
same average similarity, 0.75. Every pair of bug reports in group (a) has 0.75 similarity.
Group (b) includes three duplicate bug reports having 1.0 similarity in each pair while

188 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

the others have 0.5 similarity for each. However, group (b) should have a reading cost w
similar to that of group (c), which has a 0.25 lower average similarity compared to
groups (a) and (b). This is because the total reading cost of the three duplicate bug re-
ports should be close to the cost of one bug report. The reading cost calculated from Eq.
(9) produces exactly the same result as well.

=+ ~ 3
O 0.75 O .
(a) (b) ()

Fig. 6. Two types of situation having the same average similarity but different reading cost.

5.4 Report Clustering

Based on the reading cost (section 5.2) and report groups (section 5.3), CBAC uses
Algorithm 1 to search for nearly optimized clusters of bug reports. This is a genetic algo-
rithm that takes a set of bug report groups and gives m clusters that contain a specific
subset of report groups, where m is the potential developers. The user of this algorithm
can provide the population size, maximum generations, crossover rate, and initial/dyna-
mic mutation rate as parameters.

To execute Algorithm 1, we need five parameters: the size of the population, the
maximum number of generations, crossover/mutation rates, and the dynamic mutation
rate. In addition, the algorithm takes a set of bug reports and the number of developers as
inputs. Using these parameters and input values, the algorithm returns a best-so-far
chromosome in the population, which is the clustering information of the reports.

Algorithm 1 starts with population_size of arbitrary chromosomes generated by the
initial_population function. These chromosomes are considered as base population P to
produce children and to find the best solution. The algorithm then initializes children_
size by multiplying r. and population_size. The population, P, is reproduced until the
number of generations reaches generation_max. In each generation, the algorithm pro-
duces children_size individuals by using the following three operators (see section 5.4.3
for more details): (1) the selection operator takes two individuals from P to be parent
chromosomes, p, and p, (2) the crossover operator combines two parent chromosomes to
reproduce offspring and (3) the mutation operator changes digits of the offspring chro-
mosome with the probability r,,. r, is adjusted by r,, for each generation. All offspring
replace the one of their parents with the lower fitness value [44].

By comparing the fitness values, the algorithm then puts the offspring into P.jidren
and a weak one of the parents to eliminate into Pepecaea- After generating offspring, the
algorithm conducts a replace operation that deletes Pyeprecares from P and adds Pygren into
P.

The remainder of this section explains the representation, fitness function, and mu-
tation operators necessary for Algorithm 1.

COST-AWARE CLUSTERING OF BUG REPORTS 189

Algorithm 1: Algorithm for cost-aware balanced clustering of bug reports

Input: R: a set of bug reports
Input: D: the number of developers (i.e., the number of clusters)
Output: solution: best-so-far chromosome (i.e., clusters)
Param: population_size: the size of population
Param: generation _max: the maximum number of generations
Param: r,: crossover rate
Param: r,,; mutation rate
1 P <« initial_population (population_size, R, D);
2 children_size < population_size x r.; /The number of solutions will be created in a

generation.
3 for generation < 1 to generation_max do
4 | Poigren < {}; //Solutions which is created in this generation
5 | Pacprecated < {}3 //Solutions which will be removed in this generation
6 | for cnt < 1 to children_size do
7 P1, P2 < selection(P) offspring < crossover(py, p»)
8 if random() < r,, then
9 //mutation will be applied as r,, probability.
10 offspring < mutation(offspring)
11 end
12 Pepitaren < Penitdren \J OffSpring
13 deprecated < min_fitness(p,, p,);
14 P deprecated <« P deprecated o dep 7 ecated;
15 | end
16 | P<replace(P, Peyitarens Paeprecatea);
17 | 1ot X Vap;

18 end
19 solution < best_individual(P);
20 return solution

5.4.1 Representation

Fig. 7 shows the chromosome and the clusters used in our approach. The chromo-
some can represent one possible assignment of SRGs to clusters, which is actually an
assignment of bug reports to clusters, as described in Eq. (1) of section 4.1. The position
and digit of a gene indicate the indexes of an SRG and the cluster to which the SRG is
assigned, respectively. Thus, the bug reports in an SRG are always assigned to an identi-
cal cluster.

For example, the chromosome in Fig. 7 (a) indicates that the five SRGs are assigned
to clusters 2, 1, 2, 4 and 3. Fig. 7 (b) is a graphical representation of clusters based on the
chromosome shown in Fig. 7 (a). Note that reports in a single SRG are assigned to a sin-
gle cluster.

190 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

§ Cluster 1 Cluster 2
(=]
& 3 11
t |
=3 2 12 10
2 T | T
5 4 7
% : Cluster 3 Cluster 4

\ \ :
n N \ \ ,'

|
crmoams STTETATS)
@ (b)

Fig. 7. Representation of a chromosome and its clusters (cluster size = 4).

5.4.2 Fitness

The fitness function in our approach evaluates whether a set of clusters represented
in a chromosome is balanced with respect to the cost of bug reports in the clusters. The
approach uses the following equation to compute the fitness value for a certain assign-
ment a:

f@=c " (Cost (€,)} (an
j =

where a is a chromosome with length m while Cost(C,,) is the function described in Eq.
(10). This fitness function calculates the standard deviation of the entire group reading
cost for the report groups in a. The goal of Algorithm 1 is to find a near-optimal chro-
mosome (i.e., m clusters) that minimizes the value of Eq. (11).

5.4.3 Operators

In this approach, we use selection, crossover, and mutation operators for the repro-
duction of chromosomes. Roulette selection [45] is used for the selection operator. This
selects an individual based on its fitness value; an individual with a higher fitness value
has a higher probability of being selected.

Uniform crossover [46] is used for the crossover operator in which each gene has
the same probability of contributing to the reproduction of offspring. The mixing ratio is
fixed at 0.5 so that one offspring has approximately half of the genes from the first parent
and vice versa.

To avoid empty clusters, this approach repairs a chromosome if it can result in any
empty cluster. Since the goal of this approach is to find m clusters with a balanced cost
distribution, a chromosome with any empty cluster is obviously abnormal. Thus, CBAC
repairs the chromosome by using parent chromosomes, as shown in Fig. 8. The repairing
task searches for the leftmost gene of the first parent, which is assigned to the cluster that
is empty in the offspring. We then copy it into the same location in the offspring’s chro-
mosome from the first parent. This task repeats the repairing until there are no empty
clusters in the offspring. In the worst case, it might make one offspring identical to one of
the parents. However, we regard this to be better than chromosomes with empty clusters.
If this worst case occurs too frequently, the number of clusters m will be too large with
respect to the number of reports 7.

COST-AWARE CLUSTERING OF BUG REPORTS 191

Crossover
mask

Offspring | 3 | 2 | 1 l/l [1] 5” 3 |The cluster 4 is empty.

/
Offspring ’ | 3 4ﬁ\/ll 1 | il VS I 3 lThe cluster 2 is empty.

Offspring "| 3 | 4 | 1 | 24/1 | 5 | 3 |No empty clusters.

Sututeday

Fig. 8. Process of repairing an incorrect chromosome.

For the mutation operator, the approach utilizes the dynamic mutation rate [31]. To
prevent radical mutation, the initial mutation rate in this approach is set to 0.043. For
every generation, it is multiplied by 0.998 to dynamically change the mutation rate. For
example, the rate is adjusted to 0.006 after 1,000 generations.

6. EVALUATION

This section describes the evaluation results of CBAC. The evaluation consists of (1)
experiments; and (2) a user study. The experiments were conducted to figure out how
CBAC performs when different parameters are given. The results of the experiments can
guide users of our approach. The user study examined the effectiveness of the approach.
The study designed and carried out a survey in which we asked 60 developers about the
usefulness of our approach.

In particular, our evaluation addressed the following research questions:

¢ RQ1: What are appropriate values for parameters?
* RQ2: Is CBAC useful for a balanced distribution of bug reports with respect to cost?

RQ1 and RQ2 are answered in sections 6.1 and 6.2, respectively.
6.1 Experiments

This section describes the results of our experiments with various parameter values
to evaluate our approach. In these experiments, we used 1,047 bug reports submitted
from July 1, 2013 to July 30, 2013. They were collected from Mozilla’s issue tracking
system and the list of the reports is available at: https://sites.google.com/site/geneticcbac/.

Basically, we used the following parameter values as a baseline:

o # of clusters (i.e., developers): 25

o threshold value for report grouping: 0.86

e maximum generation: 1,000

e size of population: 1,000

o selection operator: Roulette Wheel (selection pressure=4)
e crossover operator: uniform crossover (crossover rate=0.9)
e mutation operator: uniform mutation (initial rate=0.043)

192 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

First, we used different population sizes. As shown in Fig. 9, we varied the size (P)
from 100 to 1,500. In addition, we evaluated six different numbers ranging from 5 to 30
for the number of clusters (m). When m = 5, P > 200 is sufficient to find appropriate
clusters while P > 700, P > 1,000, and P > 1,300 are sufficient for m =15, m = 25, and m
= 30, respectively. This implies that it is necessary to proportionally increase the size of
the population (P) when applying our approach to a larger number of clusters (m).

[When the size of clusters is 25, an appropriate size of population is 1,000.]

—5 —10 —15
4.0 —20 —25 —30

3.0

2.0

1.0

0.0
100 300 500 700 900 1100 1300 1500
Population

Fig. 9. Fitness values after 1,000 generations for each population size.

We then varied the crossover and mutation rates when reproducing offspring. The
crossover rate determines the portion of individuals in the population that will be used as
parent chromosomes of the crossover operator (see section 5.4.3). If this rate is too high,
the operator takes a proportionally longer time.

As shown in Fig. 10 (a), the fitness value was saturated when the crossover rate is
0.40. We varied the rate from 0.05 to 0.95 and measured the fitness value of the elitist
(out of 1,000 individuals) after 1,000 generations. From 0.05 to 0.40, the fitness value
was improved rapidly but it did not significantly change after 0.45. This implies that our
approach can produce appropriate clusters when the crossover rate is approximately 0.40.
Note that this can be the minimum crossover rate. Certainly, a higher rate can lead to
better solutions but could take more time.

Fitness

005 015 025 035 045 055 065 075 085 095 0003 001 0019 0026 0033 004 0049 005 007 0.1

Crossover rate Mutation Rate

(a) Crossover rate (b) Mutation rate
Fig. 10. Fitness values after 1,000 generations for each population size.

COST-AWARE CLUSTERING OF BUG REPORTS 193

~——Dx7 Dx3 ——Fixed —Ix3 Ix7

Fitness

0.8

0.6

04

0.05 0.2

0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Generation Generation

Fig. 11. Results of different settings used todynami- Fig. 12. Fitness value of each generation for ap-
cally adjust the mutation rate. propriate parameters.

We measured the fitness value while varying the mutation rate from 0.003 to 0.1, as
shown in Fig. 10 (b). Contrary to the crossover rate, the fitness value was not saturated.
However, the fitness value showed the best performance when the mutation rate was
0.043. Using a higher rate does not result in better performance. Thus, users of our ap-
proach can use [0.03, 0.05] as the mutation rate to obtain an appropriate set of clusters.

When the crossover and mutation rates are 0.95 and 0.043, respectively,
our approach shows its best performance.

In addition to the fixed mutation rate, we compared the performance of dynamic
mutation rates as well, with results shown in Fig. 11. We tried five different settings: two
decrement rates, two increment rates, and a fixed rate. For the dynamic decrement and
increment rates, we used two different dynamic rates. For example, the mutation rate will
be 0.116 if the dynamic rate is 1.001 and the initial rate is 0.043 after 1,000 generations.
Since the final rate is approximately three times higher than the initial rate, we denoted
this setting by Dx3. Similarly, the final rate will be 0.317 if the dynamic rate is 1.002;
this is denoted by Dx7. We applied similar dynamic rates to the increment settings and
denoted them by Ix3 and Ix7, respectively. The fixed mutation rate (i.e., 0.043) is de-
noted by Fixed.

Fig. 11 shows the results of applying different values to the dynamic mutation rate.
For the increment settings (i.e., Ix and Ix), their fitness values were quickly saturated.
On the other hand, the decrement settings (i.e., Dx3 and Dx7) resulted in worse fitness
values in early generations. However, they outperformed other settings in later genera-
tions. In particular, Dx showed the best fitness value after 1,000 generations. This implies
that gradually reducing the mutation rate can improve the performance of our approach.

[Dynamically decreasing mutation rates can achieve better clusters.]

After investigating appropriate parameters as described above, we applied our ap-
proach to the subjects explained in section 6.1: size of clusters = 25, population size =
1,000, maximum generation = 1,000, crossover rate = 0.95, initial mutation rate = 0.043,
and dynamic mutation rate = Dx7 (= 0.998). Fig. 12 shows the fitness value of each gen-
eration (we repeated our approach 10 times and selected the best one). The final value of

194 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

fitness was 0.06936 and the experiment took 15 minutes (wall-time).

In addition, we visualized the results of bug report grouping and clusters after ap-
plying our approach. Fig. 13 shows a partial view of the results after grouping similar
bug reports. The value of the grouping threshold was 0.86. White nodes represent inde-
pendent reports that have no similar reports while red nodes are reports that have at least
one similar report.

Fig. 14 represents the results of clustering using our approach. Each rectangle is a
cluster of bug reports. The average of the total reading cost of each cluster was approxi-
mately 70. This indicates that our approach can uniformly and efficiently distribute bug
reports to a specific number of developers.

000000

° /o ~
0d 200 083%00 | o o_oiito Fy
0900 00l

2002, e300

o %o

. - = °%¢%0 o

[es350e] [2009000 Bobi00e | o
3

Fig. 13. Results of grouping for bug reponémbfi Fig. 14. Results of clustering for the bug reports
Mozilla. of Mozilla.

6.2 User Study

This section presents the results of our user study. This study recruited 60 develop-
ers from 15 different companies. Among them, 30 developers responded. We asked them
about their current practice of distributing bug reports and the qualitative evaluation re-
sults of our approach. The questions and distribution of the answers are listed in Table 3.

The analysis results are interpreted as follows: According to the responses to the
first question (Q1), there are specific roles to distribute bug reports to developers. Only a
small number of participants (13%) answered that developers perform this task. How
identifying similar (or relevant) reports (Q2), some developers (20%) responded that they
leverage systematic methods while most developers rely on manual identification.

For report distribution (Q3), more than half of the participants (53%) did not agree
that their organizations uniformly distributed bug reports to developers. Although 33% of
them stated that the current practice of distributing reports is likely to be uniform, the
majority still answered that it is not sufficiently fair. 40% of participants stated that bug-
fixing effort is the first criterion of report distribution (Q4). Reading cost is the second
most frequent response.

COST-AWARE CLUSTERING OF BUG REPORTS 195

Table 3. Five questions and answers for user study.

Q1: Who does distribute bug reports?

Distributor (70%) Developer (13%) Other(17%)
Q2: How to identify similar bug reports?

Manual identification by distributors (63%)

Manual identification by developers (13%)

Systematic identification (20%)

Other (3%)

Q3: Are bug reports uniformly distributed in the current practice?
Strongly agree (10%) Agree (23%)

Neither agree nor disagree (53%)

Disagree (10%) Strongly disagree (3%)
Q4: What are the criteria of uniform report distribution?

Similar number of reports (3%) Similar reading cost (27%)
Similar bug fixing time (40%) Other (30%)

Q5: Is CBAC useful for bug report distribution?

Strongly agree (10%) Agree (57%)

Neither agree nor disagree (20%)

Disagree (13%) Strongly disagree (0%)

We then asked them about our approach. First, 67% of the participants stated that
the results of CBAC were helpful for obtaining a balanced report distribution. Negative
responses accounted for only 13%. In addition, the participants provided several sugges-
tions: addressing bug-fixing cost [9] and considering developer expertise and authorship
[16, 47].

Developers stated that our approach can contribute to balanced report dis-
tribution.

6.3 Threats to Validity

o Construct validity: The reading cost of bug reports may not be strongly correlated
with bug-fixing time in practice. However, contemporary estimation techniques [7, 8,
11] for bug-fixing effort highly depend on imprecise bug-fixing data because develop-
ers often do not accurately record their effort and time in resolving bugs. Document
reading cost can provide at least a guide for determining estimated effort to understand
bugs, and this is one of the major tasks in bug resolution.

o Internal validity: Our equation for reading cost estimation (Eq. 6) might not precisely
represent the actual complexity of a document. Since bug reports have different char-
acteristics compared to other types of documents such as technical manuals and legal
statements, general-purpose methods for computing reading cost might not work.

o External validity: Our approach might show different performance depending on sub-
jects or closed-source projects. Since our evaluation was performed only on Mozilla’s
Firefox project, applying CBAC to other projects may yield different results.

7. CONCLUSION

We presented an approach and tools aimed at distributing bug reports to developers

196 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

in a cost-effective manner, by considering their costs to provide workload balancing.
First, we extracted bug reports from open source projects. Similar report groups that can
be efficiently tackled by the same developer were then generated based on their similari-
ty and dependency. Next, GA-based experiments to find a near-optimal set of clusters
were conducted to provide a balanced distribution of bug reports. The standard deviation
of the cluster costs was used as a fitness function in the optimization process.

The analyzed data from open source projects revealed that a large number of bug
reports are concentrated on a small group of specific developers. However, overall
bug-fixing time can be delayed if bug reports are distributed to developers in an imbal-
anced manner.

We also evaluated our approach by carrying out a survey targeting 30 developers from
15 companies. The results showed that 67% of the participants found our method helpful
for triaging bugs to developers. The proposed approach, because it does not utilize the
fixing history, can also provide balanced opportunity to both existing and new developers.

When a developer is organizing a development team, our approach can be effec-
tively applied to assign a massive number of bugs to be fixed in a given limited time.
From that point of view, our approach is also related to the optimized scheduling problem.

In summary of our contribution, we suggested a novel cost metric to comprehend a
set of bugs by considering similarity and dependency of the bug reports. The bugs can be
assigned to each developer in a balanced manner based on the metric. Thus, our approach
can be effectively used in the development process, from the manager’s perspective.
Moreover, we used Kinciad’s document readability [10] to calculate the reading cost of
bug reports. This can be replaced with any other measure in the future because our
method can be applied independently of the metric. And using our approach, the struc-
ture of the development team can also be generated from a set of bug reports, by recur-
sively applying our method with a modified threshold or by using relations between the
bugs to find larger clusters.

Recently, in the field of Granular Computing [48, 49], many researchers have been
proposing new granular algorithms such as clustering [50, 51], classification [52, 53],
rule-based algorithm [54, 55], and other various approaches [56-58]. In the future, we
will improve the way to find optimal solutions by applying those algorithms.

REFERENCES

1. R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so complicated? Sim-
ple term filtering and weighting for location based bug report assignment recommen-
dation,” in Proceedings of the 10th Working Conference on Mining Software Repos-
itories, 2013, pp. 2-11.

2. C. R. Reis and R. P. Fortes, and M. Fortes, “An overview of the software engineer-
ing process and tools in the Mozilla project,” in Proceedings of Open Source Soft-
ware Development Workshop, 2002, pp. 155-175.

3. G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug tossing
graphs,” in Proceedings of the 7th Joint Meeting of European Software Engineering
Conference and ACM Symposium on the Foundations of Software Engineering, 2009,
pp. 111-120.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19

COST-AWARE CLUSTERING OF BUG REPORTS 197

. D. Cubranic and G. C. Murphy, “Automatic bug triage using text categorization,” in

Proceedings of the 16th International Conference on Software Engineering and
Knowledge Engineering, 2004, pp. 92-97.

. J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Proceedings of

the 28th International Conference on Software Engineering, 2006, pp. 361-370.

. H. Naguib, N. Narayan, B. Brugge, and D. Helal, “Bug report assignee recommen-

dation using activity profiles,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, 2013, pp. 22-30.

. A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy set and

cache-based approach for bug triaging,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering, 2011, pp. 365-375.

. J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S. Kim, “COST RIAGE: A cost-

aware triage algorithm for bug reporting systems,” in Proceedings of the 25th AAAI
Conference on Artificial Intelligence, 2011, pp. 139-144.

. C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it take to fix

this bug?” in Proceedings of the 4th International Workshop on Mining Software
Repositories, 2007, pp. 1-8.

J. P. Kincaid, L. R. P. Fishburne, R. L. Rogers, and B. S. Chissom, “Derivation of
new readability formulas (Automated readability index, fog count, and flesch reading
ease formula) for navy enlisted personnel,” Naval Technical Training: Naval Air
Station Memphis, 1975, pp. 8-75.

A. Zeller, Why Programs Fail: A Guide to Systematic Debugging, Morgan Kauf-
mann Publishers Inc., CA, 2005.

M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating bug report data for
feature tracking,” in Proceedings of the 10th Working Conference on Reverse Engi-
neering, 2003, pp. 90-99.

D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a vocabulary-
based expertise model of developers,” in Proceedings of the 6th IEEE International
Working Conference on Mining Software Repositories, 2009, pp. 131-140.

P. Bhattacharya, I. Neamtiu, and C. R. Shelton, “Automated, highly accurate, bug
assignment using machine learning and tossing graphs,” Journal of Systems and
Software, Vol. 85,2012, pp. 2275-2292.

H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning change requests
to software developers,” Journal of Software: Evolution and Process, Vol. 24, 2012,
pp- 3-33.

J. Xiao and W. Afzal, “Search-based resource scheduling for bug fixing tasks,” in
Proceedings of the 2nd International Symposium on Search Based Sofiware Engi-
neering, 2010, pp. 133-142.

N. Bettenburg, R. Premraj, and T. Zimmermann, “Duplicate bug reports considered
harmful ... really?” in Proceedings of IEEE International Conference on Software
Maintenance, 2008, pp. 337-345.

P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate defect re-
ports using natural language processing,” in Proceedings of the 29th International
Conference on Software Engineering, 2007, pp. 499-510.

. X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting dupli-

198 JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35

cate bug reports using natural language and execution information,” in Proceedings
of the 13th International Conference on Software Engineering, 2008, pp. 461-470.

C. Sun, D. Lo, X. Wang, J. Jiang, and S. C. Khoo, “A discriminative model approach
for accurate duplicate bug report retrieval,” in Proceedings of the 32nd International
Conference on Software Engineering, 2010, pp. 45-54.

A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun, “Duplicate bug re-
port detection with a combination of information retrieval and topic modeling,” in
Proceedings of the 27th IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2012, pp. 70-79.

C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate retrieval of dupli-
cate bug reports,” in Proceedings of the 26th IEEE/ACM International Conference
on Automated Software Engineering, 2011, pp. 253-262.

K. Somasundaram and G. C. Murphy, “Automatic categorization of bug reports us-
ing latent Dirichlet allocation,” in Proceedings of the 5th India Sofiware Engineering
Conference, 2012, pp. 125-130.

T. Zhang and B. Lee, “A bug rule based technique with feedback for classifying bug
reports,” in Proceedings of the 11th International Conference on Computer and In-
formation Technology, 2011, pp. 336-343.

Y. J. Horng, S. M. Chen, Y. C. Chang, and C. H. Lee, “A new method for fuzzy in-
formation retrieval based on fuzzy hierarchical clustering and fuzzy inference tech-
niques,” IEEE Transactions on Fuzzy Systems, Vol. 13,2005, pp. 216-228.

N. Y. Wang and S. M. Chen, “Temperature prediction and TAIFEX forecasting
based on automatic clustering techniques and two-factors high-order fuzzy time se-
ries,” Expert Systems with Applications, Vol. 36, 2009, pp. 2143-2154.

S. M. Chen, N. Y. Wang, and J. S. Pan, “Forecasting enrollments using automatic
clustering techniques and fuzzy logical relationships,” Expert Systems with Applica-
tions, Vol. 36, 2009, pp. 11070-11076.

H. Szu and R. Hartley, “Fast simulated annealing,” Physics Letters A, 1987, pp. 157-
162.

M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” /[EEE Computa-
tional Intelligence Magazine, Vol. 1, 2006. pp. 28-39.

S. M. Chen and N. Y. Chung, “Forecasting enrollments using high-order fuzzy time
series and genetic algorithms,” International Journal of Intelligent Systems, Vol. 21,
2006, pp. 485-501.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd
ed., Springer-Verlag, London, UK, 1996.

S. M. Chen and T. H. Chang, “Finding multiple possible critical paths using fuzzy
PERT,” IEEE Transactions on Systems, Man, and Cybernetics — Part B: Cybernetics,
Vol. 31, 2001, pp. 930-937.

S. M. Chen and C. Y. Chien, “Parallelized genetic colony systems for solving the
traveling salesman problem,” Expert Systems with Applications, Vol. 38, 2011, pp.
3873-3883.

P. W. Tsai, J. S. Pan, S. M. Chen, B. Y. Liao, and S. P. Hao, “Parallel cat swarm
optimization,” in Proceedings of International Conference on Machine Learning and
Cybernetics, 2008, pp. 3328-3333.

. P. W. Tsai, J. S. Pan, S. M. Chen, and B. Y. Liao, “Enhanced parallel cat swarm op-

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

COST-AWARE CLUSTERING OF BUG REPORTS 199

timization based on the Taguchi method,” Expert Systems with Applications, Vol. 39,
2012, pp. 6309-6319.

J. E. BellaPatrick and R. McMullen, “Ant colony optimization techniques for the ve-
hicle routing problem,” Advanced Engineering Informatics, Vol. 18,2004, pp. 41-48.
D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony optimization for resource-
constrained project scheduling,” IEEE Transactions on Evolutionary Computation,
Vol. 6, 2002, pp. 333-346

R. Flesch, “A new readability yardstick,” Journal of Applied Psychology, Vol. 32,
1948, pp. 221-233.

L. Si and J. Callan, “A statistical model for scientific readability,” in Proceedings of
the 10th International Conference on Information and Knowledge Management,
2001, pp. 574-576.

R. P. L. Buse and W. R. Weimer, “Learning a metric for code readability,” IEEE
Transactions on Software Engineering, Vol. 36, 2010, pp. 546-558.

G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,”
Communications of the ACM, Vol.18, 1975, pp. 613-620.

G. Salton and M. J. McGill, Introduction to Modern Information Retrieval, McGraw-
Hill, Inc., NY, 1986.

J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling sales-
man problem,” in Proceedings of the American Mathematical Society, Vol. 7, 1956,
pp- 48-50.

D. J. Cavicchio, “Adaptive search using simulated evolution,” Ph.D. Thesis, De-
partment of Computer Science, University of Michigan, 1970.

A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochastic acceptance,”
Physica A: Statistical Mechanics and its Applications, Vol. 391, 2012, pp. 2193-2196.
G. Syswerda, “Uniform crossover in genetic algorithms,” in Proceedings of the 3rd
International Conference on Genetic Algorithms, 1989, pp. 2-9.

F. Servant and J. A. Jones, “WhoseFault: Automatic developer-to-fault assignment
through fault localization,” in Proceedings of the 34th International Conference on
Software Engineering, 2012, pp. 36-46.

Y. Yao, “A triarchic theory of granular computing,” Granular Computing, Vol. 1,
2016, pp. 145-157.

D. Ciucci, “Orthopairs and granular computing,” Granular Computing, Vol. 1, 2016,
pp. 159-170.

G. Peters and R. Weber, “DCC: A framework for dynamic granular clustering,” Gran-
ular Computing, Vol. 1, 2016, pp. 1-11.

P. Lingras, F. Haider, and M. Triff, “Granular meta-clustering based on hierarchical,
network, and temporal connections,” Granular Computing, Vol. 1, 2016, pp. 71-92.
M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Multi-objective evolu-
tionary design of granular rule-based classifiers,” Granular Computing, Vol. 1, 2016,
pp- 37-58.

H. Liu and M. Cocea, “Granular computing-based approach for classification to-
wards reduction of bias in ensemble learning,” Granular Computing, Vol. 2, 2016,
pp. 131-139.

H. Liu, A. Gegov, and M. Cocea, “Rule-based systems: A granular computing per-
spective,” Granular Computing, Vol. 1, 2016, pp. 259-274.

200

55.

56.

57.

58.

JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

S. S. S. Ahmad and W. Pedrycz, “The development of granular rule-based systems: a
study in structural model compression,” Granular Computing, Vol. 2, 2017, pp. 1-12.
A. Skowron, A. Jankowski, and S. Dutta, “Interactive granular computing,” Granu-
lar Computing, Vol. 1, 2016, pp. 95-113.

D. Dubois and H. Prade, “Bridging gaps between several forms of granular compu-
ting,” Granular Computing, Vol. 1, 2016, pp. 115-126.

L. Livi and A. Sadeghian, “Granular computing, computational intelligence, and the
analysis of non-geometric input spaces,” Granular Computing, Vol. 1, 2016, pp. 13-
20.

Jaekwon Lee (ZETEHE) received the B.S. and M.S. degrees in
Computer Engineering from Chungbuk National University, Korea,
in 2013 and 2015, respectively. Currently, he is a Ph.D. student in
the Department of Computer Engineering, Chungbuk National Uni-
versity. His research interests include mining software repositories
and search-based software engineering (SBSE).

Dongsun Kim (£%##) received the B.E., M.S., and Ph.D.
degrees in Computer Science and Eengineering from Sogang Uni-
versity, Seoul, Korea, in 2003, 2005, and 2010, respectively. He is
currently a Research Associate at the University of Luxembourg.
His research interests include mining software repositories, auto-
matic patch generation, static analysis, search-based software en-
gineering (SBSE).

Woosung Jung (Z878%) received his B.S. and Ph.D. degrees
in Computer Science and Engineering from Seoul National Univer-
sity, Korea, in 2003 and 2011, respectively. He was a Researcher in
SK UBCare from 1998 to 2002. He was a Senior Research Engineer
at Software Capability Development Center in LG Electronics from
2011 to 2012. He was an Associate Professor at the Department of
Computer Engineering, Chungbuk National University from 2012 to
2016. He is currently an Associate Professor at the Graduate School
of Education, Seoul National University of Education. His research
interests include software education, software engineering, adaptive
software system and data mining.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

