
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 175-200 (2019)
DOI: 10.6688/JISE.201901_35(1).0010

175

Cost-Aware Clustering of Bug Reports
by Using a Genetic Algorithm*

JAEKWON LEE1, DONGSUN KIM2 AND WOOSUNG JUNG3,+

1Department of Computer Engineering
Chungbuk National University
Cheongju, 28644 South Korea

2Interdisciplinary Centre for Security Reliability and Trust
University of Luxembourg

Kirchberg, 4365 Luxembourg
3Graduate School of Education

Seoul National University of Education
Seoul, 06639 South Korea

E-mail: exatoa@cbnu.ac.kr1; dongsun.kim@uni.lu2; wsjung@snue.ac.kr3

The inefficient distribution of bugs to developers is increasing the cost of software

development and maintenance. In efforts to tackle this issue, various studies have been
carried out to recommend suitable developers for specific bugs. These studies often lev-
erage similarity between bug reports; for example, if a developer addressed a bug report
similar to a newly incoming report, that developer can be suitable to fix the bug de-
scribed in the new report. However, the existing studies have resulted in imbalanced dis-
tribution  a large number of bugs can be concentrated in a small number of developers.
In this paper, we propose a novel approach to achieve a cost-aware distribution of bug
reports to support workload balancing. Our approach is composed of two phases. First, a
set of similar report groups composed of strongly related bugs is generated based on their
similarity and dependency. Clusters are then created by grouping the similar report
groups so that each cluster can have similar cost (i.e., minimizing its standard deviation).
Our approach leverages a genetic algorithm to find a near-optimal distribution of bug
reports because it is an NP-hard problem. The experiments with 1,047 bug reports col-
lected from Mozilla’s Firefox were conducted to evaluate our approach. The results
showed that our approach effectively provides an appropriate solution to achieve a cost-
balanced distribution of bug reports. In addition, we carried out a user study targeting 30
developers from 15 companies to figure out the usefulness and effectiveness of our ap-
proach. Among the participants, 67% answered that our approach is useful for triaging
their bugs to developers. This shows the possibility for use in cases of managing or tri-
aging bugs from the project manager’s perspective.

Keywords: bug report, mining software repositories, bug triage, genetic algorithm, as-
signment optimization

1. INTRODUCTION

The number of bugs in software projects is increasing, and they are overwhelming
developers and maintainers. According to Shokripour’s research [1], more than 300 new
bugs are added to the Mozilla project per day. It is thus becoming harder for bug triagers

Received October 2, 2017; revised November 20, 2017; accepted December 28, 2017.
Communicated by Shyi-Ming Chen.
* This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea

government (Ministry of Science, ICT & Future Planning) (No. 2015R1C1A1A01054994).
+ Corresponding author.

JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

176

to distribute the bug reports to developers properly and in a cost-effective manner. To
support the maintenance process, ITS (Issue Tracking System) is used to manage bugs
effectively [2]. However, with regard to the issue of the distribution bugs, ITS accompa-
nies problems from the perspective of workload balancing and the manual triaging pro-
cess.

One of a bug triager’s important tasks is to assign bugs to appropriate developers.
When a new bug is reported, the triager checks if it is a duplicate bug with previously
reported bugs. It is then validated in terms of whether it contains wrong information or it
is reproducible. Finally, the bug is assigned to a developer who is considered the most
qualified handler for it. However, this process is tedious and can increase the cost of fix-
ing bugs because triagers should manually deal with the reports [3].

Researchers thus have proposed various methods to find the most suitable develop-
ers to fix given bugs, based on bug assignment histories collected from ITS [1, 4-7]. For
example, Cubranic and Murphy [4] proposed suitable developers recommendation ap-
proach utilizing history information how those developers handled similar bug reports.
They achieved 30% accuracy on the Firefox project by recommending 5 developers.
However, most of researchers focused on the issue of finding a suitable developer for a
specific bug, not considering the overall cost of tackling the bug reports or a balanced
distribution from the assigner’s perspective.

This could delay the project schedule and eventually increase the overall develop-
ment cost. Developers who newly join a project are rarely assigned to fix bugs because
they have no history data in the repositories. Furthermore, the estimated cost simply
based on history data is not precise. Notably, the precision of semi-automated triaging [1]
decreased to 50% in a case in which only one developer was recommended. Pack et al.
focused on reducing the cost rather than increasing the precision of triaging [8]. However,
they only used the developer’s bug-holding time as their cost, which could include bug-
tossing [3] time or doing-nothing time as well.

We thus analyzed developer’s workload assuming that often a large proportion of
bugs are assigned to a small number of specific developers. We extracted all bug reports
of the Firefox project, and then compared the ratio of bugs that were being fixed by ac-
tive developers (which are the top 10% of developers when sorting them according to the
number of reports assigned). The results showed that more than 50% of the bugs were
assigned to the top 10% of the active developers on average. For the worst case, more
than 80% of the bugs were assigned to the top 10% of active developers. Finally, we re-
alized that there is an imbalanced distribution of bug reports.

In this paper, we propose a GA-based approach to achieve a cost-aware optimal dis-
tribution of bugs to support cost-balanced triaging. We defined the repository schema for
the bug reports, and then implemented a set of tools to extract, analyze, and generate
clusters of bugs for a given number of developers. The clustering process is composed of
two phases. The first phase is generating similar report groups (SRGs) that are composed
of strongly related bugs that are considered to have high similarity or dependency. Thus,
they are not split into different groups in the next phase of clustering. The second phase
is to generate clusters based on the total costs of the SRGs. In this phase, the standard
deviation of the cluster’s cost is used as a fitness of our optimization process.

In short, our approach entails finding a near-optimal distribution of the given bugs,
which the distribution enables a cost-balanced assignment from the manager’s point of

COST-AWARE CLUSTERING OF BUG REPORTS

177

view. Our method is thus effective when assigning a massive number of bugs to a devel-
opment team in a cost-balanced manner.

Additionally, our method does not depend on the history data of the repositories,
which also differentiates it from previous approaches that use such data for cost estima-
tion [8, 9]. Thus, our approach can be applied for any given set of bug reports. Based on
the document readability [10], we also defined a reading cost metric to calculate the
reading cost of the bugs. The cost metric can be easily enhanced without changing the
framework of the proposed method. The results of optimization demonstrate the effec-
tiveness of our approach by showing that the standard deviation of the final bug clusters’
cost can reach below 0.07. We received 67% positive responses to our approach from
developers who participated in a survey.

We can summarize the contributions of our research as follows:

 A near-optimal assignment of bugs to a group of developers can be conducted via the
concept of load balancing.

 A novel cost metric to comprehend a set of bug reports is defined by considering simi-
larity and dependency of bug reports.

 A methodology including overall schema and process is provided in the case of man-
aging or triaging bugs from the project manager’s perspective.

The remainder of this paper is organized as follows. Section 2 describes the motiva-

tion of our research with the analyzed distribution data of bugs in open source projects.
Section 3 describes related work. Section 4 presents the assumptions of our research and
formally defines the balanced distribution of bug reports. Section 5 explains in detail our
approach to generate balanced clusters of bug reports. Section 6 shows the results of ex-
periments to evaluate the usefulness and effectiveness of our method and discusses our
research including threats to validity. Finally, section 7 provides our conclusions.

2. MOTIVATION

Contemporary software projects including open source software (OSS) often em-
ploy issue tracking systems to efficiently deal with issues such as bugs and feature re-
quests. Users can submit bug reports to the system when faced with abnormal behaviors
on a software. The submitted bug reports are assigned to developers by a triager (e.g.,
product manager). Triagers of OSS projects often assign bug reports based on developer
expertise [5].

However, bug report assignment can be easily imbalanced. Jeong et al. [3] stated
that a few developers can take too many bug reports after a small number of report toss-
ing. This imbalanced distribution may delay overall software development since this can
impose an excessive burden on a few developers. In particular, this problem can be more
serious because more than 300 bug reports are filed every day in many recent OSS pro-
jects [1].

To determine whether an imbalanced distribution occurs in OSS projects, we inves-
tigated bug reports of Mozilla Firefox†. We collected 142,217 bug reports from Mozilla’s
issue tracking system from the beginning of the project to August 31, 2014. For each bug

† https://bugzilla.mozilla.org/

178

repo

assig

 Ru
sig

 Ru
is p

 Ru
ass

 Ru
RE
ass

 Ru
the

 Ru
VE

For
assig
focu
in a
four-

Fig.

the d
cord
60%
many
10 &
deve
age.

rt, we examin
Since some b

gnee, we colle

ule 1: A user
gnee informati
ule 2: A user w
provided.

ule 3: The last
signees and st

ule 4: If two d
ESOLVED, re
signee.

ule 5: If no exp
e creation tim
ule 6: If there
ERIFIED or C

We examine

each develope
gned and (2) t
us is on figurin

specific perio
-week window

1. Inspection o
(number of a

Fig. 2 shows
developers int

ding to the num
% of bug repor

y highly inact
& 90% and ex
elopers, more t
This implies t

JAEKWON L

ned changes in
bug reports do
ected status tra

who changed
ion is provide
who changed

t value of the
tatus changes
different users
spectively, th

plicit ASSIGN
e of the bug re

e is no explici
CLOSED is reg

d how many
er, we counte
the number of
ng out whethe
od rather than
w, as shown in

of the number o
assigned bug re

s the proportio
to two groups
mber of repor
rts were assig
tive developer

xamined the di
than 50% of r
that the curren

LEE, DONGSUN

n status and as
o not follow n
ansitions base

d the status in
ed.
the status into

assignee field
are not used.
changed the

e user who ch

NED status is p
eport is regard
it RESOLVED
garded as the

bug reports a
ed two numbe
f reports that
er a few devel

the entire life
n Fig. 1. We s

of bug reports
ports = 7, the n

on of bug rep
s: (1) top 10%
ts assigned. A

gned to the to
rs in the 90%
istribution. Th
eports were as
nt practice dis

KIM AND WOOS

ssignee fields.
normal status

ed on the follo

nto ASSIGNE

o RESOLVED

d is regarded a

status of a sin
hanged it into

provided whil
ded as the assi
D status, a us
assignee.

are assigned
ers: (1) the nu
are being pro

lopers assume
e cycle, we in
slid this windo

for a certain d
number of held

ports newly as
% and (2) oth
As shown in F
op 10% of de

%, we split the
he results are
ssigned to the
stributes repor

SUNG JUNG

s transitions [2
owing rules:

ED is the assig

D when no ass

as the actual a

ngle report int
RESOLVED

le the assignee
igned time.
er who chang

and owned by
umber of repo
ocessed, respe
e an imbalance
nvestigated bu
ow by one wee

developer withi
bug reports = 9

ssigned to dev
her 90%, after
Fig. 2 (a), on a
evelopers. Sin
 10% again in
shown in Fig
top 10% of d

rts in an imbal

2, 11] and cha

gnee when no

signee informa

assignee. Prev

to ASSIGNED
is regarded as

e field is avail

ged the status

y each develo
orts that are ne
ectively. Since
ed workload w

ug reports with
ek.

n a sliding win

9).

velopers. We
r sorting them
average more
ce there migh
nto two subse
g. 2 (b). For ac
evelopers on a
lanced manner

hange

o as-

ation

vious

D and
as the

lable,

into

oper.
ewly
e our
with-
hin a

ndow

split
m ac-

than
ht be
ets of
ctive
aver-
r.

(a)
Fig. 2

Tabl

T

Top

Fig. 3

wind
hold
the t
This

repo
the r
time
sults
spen
time
exce

Two groups of
2. Rate of assig

reports assig
sliding unit =

le 1. Bug reso
ers (base

 D
Top 10%

Rest
p 10% / Rest

3. Rate of held
sliding unit =

In addition, w

dow. If the to
d numbers of r
top 10% of de
 is not signific
This imbalan
rts resolved b
rest of develo
 between the

s. The top 10%
nt 9 times long
s longer time

essive burden t

COST-A

f developers in a
gned bug report
gned each week
= 1 week).

olution time be
ed on the resu
Count of

Developers
Co

134
170
0.8

d bug report eac
= 1 week).

we investigate
op 10% of dev
reports similar
evelopers held
cantly differen
nced distribut
by developers
pers (based o
assignment a

% of developer
ger time for th
e than others.
to resolve bug

AWARE CLUSTER

all developers.
ts into two grou
k from August

etween the top
lts of Fig. 2 (b
ount of Resolve

Bugs
95,119
14,612

6.5

ch week from A

ed the number
velopers can
r to those of o

d more than 40
nt from the res
tion affected t

who had bee
on the results
and resolution
rs resolved 6 t
hem. For each
This indicate

gs on time.

RING OF BUG R

(b) Two group
ups after sortin
2002 to Augu

p 10% at leas
b)).
ed Total Elap

Time (da
19,135,7
2,050,43

9.3

Aug 2002 to A

r of reports th
resolve bugs

other develope
0% of reports
sults shown in
the bug resol

en involved in
shown in Fig

n for each bug
times more re

h report, the to
es that the top

EPORTS

ps of developers
g them accordi

ust 2014 (windo

st once and th

psed
ay)

Averag
per a Bu

67
31

Aug 2014 (wind

hat each develo
faster than o

ers. However,
on average, a

n Fig. 2.
lution time. W
n the top 10%
. 2 (b)). We t
g report. Tabl
eports than oth
op 10% of dev
p 10% develop

s in top 10% dev
ng to the numb
ow size = 4 w

he rest of deve

ge Elapsed Tim
ug (day per a Bu

201.2
140.3

1.4

dow size = 4 w

oper held with
others, they w
, it turned out

as shown in Fi

We examined
% at least once

then measured
le 1 shows the
her developers
velopers spen
pers may hav

179

velopers.
ber of

weeks,

elop-

me
ug)

weeks,

hin a
would
t that
ig. 3.

bug
e and
d the
e re-
s and
nt 1.4
ve an

JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

180

Based on the above observations, in this paper we present a novel approach, CBAC

(Cost-aware BAlanced Clustering), to balance the distribution of bug reports. This ap-
proach takes the reading cost of each bug report into account and uses a genetic algo-
rithm to achieve a balanced distribution of reports.

3. RELATED WORK

3.1 Triaging Bug Reports

There have been various studies related to bug assignment or triaging. These studies

initially focused on finding suitable developers by using triaging histories on who had
handled what bug reports in the past.

Cubranic and Murphy proposed a semi-automatic bug triaging method [4] inspired
by Fischer’s research to extract the software features from code history and a set of bug
reports [12]. They transformed textual summaries and descriptions into computable fea-
ture-vectors based on TF-IDF. The vectors being mapped to the bug assignees were then
classified by using the naïve Bayesian technique. The experimental results showed 30%
accuracy in triaging the bug reports of the Eclipse project.

Anvik et al. proposed a novel technique [5] using the support vector machine algo-
rithm to improve the previous semi-automatic triaging [4]. They used a heuristic approach
to build a word-vector from bugs and labeled them with related developers. The precisions
of the algorithm applied to Eclipse and Firefox were 57% and 64%, respectively, which
were 4~20% higher than in previous cases.

On the other hand, Matter et al. focused on extracting developer expertise from
source codes to enhance the bug triaging process [13]. To represent developer expertise,
they created a term-author matrix by extracting bag of words from all source code histo-
ries. The temporal decay was also considered by diminishing the weight of expertise as
time passed since the code had been changed. When they have a new bug report, they
build a term-vector of the bug report and compare it with the term-author matrix. Their
approach showed 33.6% top-1 precision and 71% top-10 recall.

Bhattacharya extended Jeong’s tossing graph [3] to exclude inactive developers by
considering the period of their activeness [14]. Comparison experiments with various
machine learning algorithms were conducted to find the best solution to bug assignment,
naïve Bayes showed 86% accuracy.

Shokripour et al. proposed a two-phased location-based triaging method [1] to re-
solve this problem. They built a weighted noun-index using simple terms in order to pre-
dict the location of each bug and assign a proper developer. Their method showed 89%
and 59% precisions for JDT and Firefox, respectively, a 70% improvement over the pre-
vious approach [15].

However, most of them focused on the issue of finding a suitable developer for a

More than 60% of bug reports are assigned to 10% of developers on aver-
age while they spend 1.4 times longer time to resolve the reports than other
developers.

COST-AWARE CLUSTERING OF BUG REPORTS

181

specific bug, not considering the overall cost of tackling the bug reports or a balanced
distribution from the assigner’s perspective. As a result, it is difficult to provide a fully
automated solution to those problems.

3.2 Cost Estimation of Handling Bug Reports

There have been several studies on estimating the cost of handling bug reports.

Weiss et al. estimated the modification time of a newly given bug by using the average
time previously to have similar bugs fixed [9]. Their approach showed 30% precision for
the JBoss data. However, the method was only applicable for systems capable of record-
ing the effort history.

Park et al. proposed a solution to this issue by considering the developer’s bug-fix-
ing cost [8]. The purpose of their work was to minimize the fixing cost and maximize the
triaging precision at the same time. Their approach showed that a 10% decrease of the
precision could cut the total fixing cost in half for open source projects such as Apache,
Eclipse, Linux Kernel, and Mozilla. Their research showed the importance of a cost-
balanced distribution of bugs in triaging. However, the time gap between bug-assigned
time and bug-resolved time was considered as the fixing cost for a bug.

Xiao and Afzal also utilized the estimated effort to fix bugs to tackle bug reports
with GA-based scheduling in the software testing phase [16]. They also defined models
for the bug report and for the developer with fundamental information such as required
skill, competency, experience, and workload. However, this required manual evaluations
for all data in order to predict the fixing cost of each bug.

In most approaches, the time difference between the time of a bug being assigned
and it being fixed was considered as the cost of the bug. For these approaches, however,
It is necessary to acquire the fixing history of similar bugs, and it is difficult to estimate
the cost of bug reports with short-term history. From this point of view, our approach
uses the size, difficulty, and similarity of the documents to predict the cost of bugs.

3.3 Grouping Similar/Duplicate Bug Reports

Several studies have been conducted to detect bug reports describing the same pro-

blem, not only because duplicate bugs can compensate for insufficient information but
also because they can confuse developers and lead to inefficiency [17]. Runeson et al.
studied the detection of duplicate bug reports based on natural language processing for
the first time [18]. They extracted summaries and descriptions from open source projects,
and then generated a feature-vector based on TF-IDF. The cosine similarity algorithm
was used to compare the similarity between each pair of bugs and a time frame was given
to reduce the number of bugs to be compared. By investigating the top 5 high similarity
bugs, they found 30% duplicate bugs Sony Ericsson’s project.

Wang et al. extended Runeson’s method [18] and improved the accuracy of the du-
plicate bug detection algorithm by using execution information as well as natural lan-
guage data [19]. In particular, the execution information was a better source for detecting
similar internal behaviors of defects than a text-based description, which was limited in
terms of representing their external behaviors. Wang’s approach showed better accuracy
than Runeson’s for the Eclipse and Firefox projects.

JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

182

Sun et al. used an SVM-based machine learning algorithm to train a model using
duplicate and non-duplicate pairs of bugs extracted from a repository [20]. Their experi-
ment to recommend the top 5 duplicated bugs showed 50% recall for the Eclipse, Firefox,
and OpenOffice projects. However, no obvious improvement was found in the case of
excluding manually tagged information.

Nguyen et al. used the Latent Dirichlet Allocation as well as a text-based retrieval
technique to detect duplicate bugs expressed in different terms [21]. They defined a topic
model based on LDA, and combined it with BM25 to resolve the issue. The results of
recall applying DBTM to the Eclipse project were 57%, 76%, and 82% for the top-1,
top-5, and top-10 recommendations, respectively. These results were 20% higher than
previous methods [22]. Somasundaram and Murphy used the Latent Dirichlet Allocation
with Kullback-Leibler divergence to correctly assign bug reports that had been catego-
rized into the wrong components [23]. Zhang and Lee grouped bug reports that had been
included in the same component. They then compared the bug reports located in the same
group to detect duplicate bugs [24].

Several approaches applied machine learning techniques based on similarity metrics
to find duplicate bugs. In order to apply the machine learning techniques to duplicate
bugs, the number of clusters or training sets should be provided. To address these con-
straints, we adopted threshold values for the similarity metric to group them into undi-
vided SRGs. We also considered fuzzy inference that is utilized for document clustering
[25], temperature prediction [26], and forecasting enrollments [27] to detect duplicate
bugs. However, we chose a simple similarity algorithm based on TF-IDF because of their
complexity.

3.4 Optimization Algorithms

There are many approaches to find optimal solutions such as Simulated Annealing

[28], Ant Colony Optimization [29], Genetic Algorithm [30, 31], and fuzzy-related algo-
rithms [32-35]. Since finding a solution from optimization problem is too complex to
compute all the possible cases, these algorithms are used to obtain the near-optimal solu-
tion instead of the real-optimal solution.

Simulated Annealing [29] is a global search algorithm that mimics the physical an-
nealing of solids. It starts from a random position and moves toward the optimal solution
progressively. Jumping to a far distance from a current optimal solution with a small
probability is used to prevent the algorithm from falling into local optimization.

Ant Colony Optimization [30] is a global search algorithm that mimics the way how
ants find food. The initial goal was to find the optimal path in a graph. The algorithm
moves randomly to the direction of a target node. When it reaches the target node, it
moves back to the start node with the pheromone. After the several iterations, the best
pheromone intensity path will be selected to determine the optimal solution. This ap-
proach is used as a global search algorithm in various fields such as routing [36] and
scheduling [37].

Genetic Algorithm [31] is one of the evolutionary algorithms that is inspired by the
process of natural selection. It creates a population that is an initial set of solutions and
evolves the population through operators such as crossover, mutation, and selection itera-
tively. This process provides an effective way to find globally optimal solutions by keep-

COST-AWARE CLUSTERING OF BUG REPORTS

183

ing wide-range of candidates in a set of solutions. To apply the Genetic Algorithm, it is
not only necessary to be able to convert a solution of the problem into a chromosome but
we also need to define a fitness function to evaluate the solution.

4. COST-AWARE BUG REPORT CLUSTERING

This section defines a balanced clustering problem of bug reports with respect to the
cost of the bugs. As described in section 2, the overall defect resolution can be delayed if
bug reports are assigned to developers in an imbalanced manner. It is thus necessary to
efficiently distribute bug reports to developers so that they can spend similar amounts of
time in resolving bugs.

In this paper, it is assumed that a balanced bug distribution is necessary from the
perspective of production managers. If a few developers take too many bugs, vulnerabil-
ity to production delay is greatly increased. Thus, bug triagers should focus on balancing
the cost of bugs assigned to each developer. A balanced distribution can have a higher
priority than expertise matching. Otherwise, there will be increased vulnerability to de-
layed project releases.

Our goal is to distribute bug reports to each developer in a balanced way based on
the assumption described above. To formally define this problem, it is necessary to clar-
ify several concepts in the bug assignment process. For a given n number of bug reports
and m number of developers, which should be the same as the number of clusters to be
generated, let B = {b1, b2, …, bn} be a set of the bug reports. Bug assignment can be de-
termined by the n-dimensional vector:

a = a1, a2, …, an (1)

where ai is an index of a cluster to which a bug report bi belongs (1 ≤ i ≤ n, 1 ≤ ai ≤ m).
Then, a cluster with an index j, which is actually a set of bug reports, can be defined as
ca,j (1 ≤ j ≤ m) for an assignment a.

Let Ca = {ca,1, ca,2, …, ca,m} be a set of clusters made by an assignment aA, where
A is a universal set of assignments. Each bug reports are assigned to clusters. Later, each
cluster will be assigned to a certain developer for a balanced report distribution.

For a certain assignment a, it is necessary to compute the total cost of assigned bug
reports for each cluster. Let CostB be a function defined to compute the cost of bug re-
ports as follows:

CostB: B  R. (2)

Based on CostB, the total cost of bug reports in cluster ca,j for a certain assignment a
can be defined as:

,

,() ().
j

C j B
b c

Cost c Cost b


 
a

a (3)

The cost of a set of bug reports is not just the sum of each bug report’s costs because
of their similarity and dependency. The details related to this issue are described in sec-

184

tion

As s
the s

class
ment
ta-he
such
prob
repo

cost-

5.1 O

secti
repo
proje

bug
divid
lever
tion

field
Sinc

5.
Our goal is to

shown in Eq.
set of assignm

arg minopt
A

a



a

Finding aopt i
s is NP-hard
ts to 5 develo
euristic appro
h complex pro
blem. In sectio
rts for a given

This section
-aware bug rep

Fig. 4. O

Overview

CBAC is an

ion 4. This ap
rts for a give
ect from being
As shown in
reports and g

dual bug repo
rages a geneti
of cost.
CBAC uses

ds contain the
e the goal of

JAEKWON L

o minimize de
(4), it is nece

ments A when d

1n { (m
j CCost c 

is a combinato
and intractabl

opers is simply
ach such as g

oblems. There
on 5, this pape
n set of develo

describes our
port clustering

Overview of our

approach to
pproach levera
en number of
g overwhelme

n Fig. 4, CBA
groups similar
orts and repor
ic algorithm t

only the sum
e initial inform

this paper is

LEE, DONGSUN

eviation of est
essary to find
dividing n rep

,)}jca

orial optimizat
le. For examp
y calculated a
genetic algorit
efore, local se
er presents a n
opers.

5. APPR

r approach, C
g.

approach, CBA

achieve cost-
ages a genetic
developers. T

ed by a large n
AC has three s

reports togeth
rt groups. Aft
to cluster bug

mmary (i.e., ti
mation for a g
to obtain bala

KIM AND WOOS

timated effort
an optimal a

ports for m dev

tion problem
ple, the numb
as 520 which is
thm provides

earch techniqu
novel approac

ROACH

CBAC (Cost-a

AC (Cost-aware

aware bug re
c algorithm to
This process p
number of bug
sub-tasks. Firs
ther. It then co
ter obtaining

g reports with

itle) and desc
given bug tha
anced clusters

SUNG JUNG

t to fix bugs a
and balanced d
velopers.

and its compu
ber of cases to
s greater than
effective opt

ues may not b
ch to balanced

aware BAlanc

e BAlanced Clu

port clusterin
o find balance
prevents a few
g reports.
st, it measure
omputes the r
the reading c
respect to a b

cription of a b
at the reporter
s of bug repor

among develop
distribution ao

utation comple
o assign 20 d
90 trillion. A
imal solutions

be suitable for
d clustering of

ced Clustering

ustering).

g, as describe
ed clusters of
w developers

s the similarit
reading cost o
cost, the appro
balanced distr

bug report. T
rs are faced w
rts with respe

pers.
opt in

(4)

exity
docu-

A me-
ns for
r this
f bug

g), to

ed in
f bug

in a

ty of
of in-
roach
ribu-

These
with.
ect to

COST-AWARE CLUSTERING OF BUG REPORTS

185

reading cost rather than achieving better report assignment, we focused on textual infor-
mation.

The remainder of this section describes the tasks of CBAC in detail.

5.2 Bug Report Reading Cost

To compute the cost of a given bug report, CBAC uses the document reading cost.

This cost represents the effort to understand a specific document. Since bug reports are
documents written in natural languages, reading and understanding bug reports take a
significant amount of debugging effort. Thus, reading cost can be an effective indicator
for measuring the cost of a bug report.

Our approach uses three metrics to calculate the reading cost of a bug reports: (1)
word difficulty; (2) sentence complexity; and (3) document length. First, difficult or un-
familiar words can increase the cost of document reading since a document reader may
need to search in a dictionary or on the web for the concept of the words. Complex sen-
tences can make a reader take more time to understand the document. In addition, the
size of a document (e.g., the number of words or sentences) may inherently increase the
effort needed to read and understand it.

To compute the word difficulty and sentence complexity, this approach uses the
Flesch-Kincaid equation [10]. This equation improves Flesch Reading Ease [38]. The
United States Department of Defense uses this equation to evaluate its documents [39].
As shown in Eq. (5), the Flesch-Kincaid equation measures the reading cost of a docu-
ment b (i.e., a bug report in this approach) by using the following two terms: (1) the av-
erage number of syllables in words to compute word difficulty and (2) the average num-
ber of words in sentences to compute sentence complexity.

_ () _ ()
_ () _ ()() 0.39() 11.8() 15.59word count b syllable count b

sentence count b word count bFK b    (5)

CBAC defines the reading cost for a document b as CostB(b) based on the Flesch-
Kincaid equation and document size (the number of words) as shown in Eq. (6). CostB(b)
is a product of the Flesch-Kincaid value and the number of words in a document b. We
set the coefficient of the first term to 10−1 since 10 is the minimum level of readability for
ordinary documents based on the US government requirements [40]. As FK(b) yields [0,
20], it is normalized into [1, 3]. Similarly, the approach normalizes the second term (i.e.,
document size) by 100 so that it will not dominate the first term.

() _ ()
10 100() (1)()B

FK b word count bCost b   (6)

5.3 Grouping Bug Reports

CBAC groups similar bug reports together before clustering the reports. Reading

similar documents can reduce reading cost; after reading a bug report, the reading cost of
another similar report can be lower than the cost of understanding the report indepen-
dently. Thus, it is necessary to put similar bug reports into a group.

JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

186

5.3.1 Bug report similarity

To compute the similarity of a pair of bug reports, CBAC leverages the Vector

Space Model (VSM) [41]. This approach transforms text in a bug report (title and de-
scription) into a vector. The vector consists of TF-IDF (term frequency-inverse document
frequency) [42] values of each word in the bug report; this is computed by Eq. (7). Let t
be a term used in report b. tf(t, b) is the scaled frequency of the raw term frequency f(t, b).
B is a set of bug reports and N(t, B) is the number of documents in which the term t ap-
pears. idf(t, B) is the inverse document frequency of the term t in B. tfidf(t, b, B) is the
TF-IDF value of the term t in the report bB.

| |

(,) 1 log (,)

(,) 1 log

(, ,) (,) (,)
t

B
N

tf t b f t b

idf t B

tfidf t b B tf t b idf t B

 

 

 

 (7)

Cosine similarity is used to compute the similarity between reports. CBAC performs
a pair-wise comparison between all bug reports to determine similar report groups
(SRGs). Eq. (8) shows the similarity equation used in our approach:

1 2

1 21 2 | || |(,) V V
V VSim V V  (8)

where V* is a term vector (its elements are computed using Eq. (7)) of bug reports.
CBAC uses the similarity values to identify SRGs. The approach defines a threshold

value when identifying report groups. Once a subset of bug reports is classified into an
SRG, it is dealt with by single developers so that the reading cost will be reduced.

To determine an appropriate threshold value, we conducted a preliminary user study.
In this study, we asked five developers whether a specific threshold is effective to iden-
tify SRGs. For this study, we collected 1,047 bug reports of Mozilla Firefox submitted
from July 1, 2013 to July 30, 2013. We then computed the pair-wise similarity of the
reports. Among these reports, we selected 41 pairs of similar bug reports in which their
similarity values were higher than 0.5.

We provided the pairs to the five developers and asked them to evaluate the effec-
tiveness of each pair with respect to reducing reading cost. The effectiveness was evalu-
ated by the five-level Likert scale as shown in Table 2.

Table 2. Likert scores to determine appropriate threshold.
Likert Score Description

5
4
3
2
1

Very Helpful
Helpful
Normal

Rarely Helpful
Never Helpful

Fig. 5 shows the results of the similarity evaluation. The X-axis represents threshold
values (for each 0.01 unit) and the Y-axis is the ratio of each answer shown in Table 2.

We
gethe
for r
more

5.3.2

repo
Edge
Afte
grap

defin
the c
pute
edge
out a

pute

wher

of SR
Ther
re-de

same
Grou

supposed that
er by a single
report groupin
e than a score

2 Similar rep

Once CBAC
rts into a grou
es can be def
r connecting
h; these SRGs
Since reading

ne the reading
cost of all bug
the reading c

es with maxim
any cycle.
After identify
the reading c

()G
b

Cost g  

re min{x, y} r
Finally, beca

RGs: {g1, g2,
refore, the tot
efined as:

,()C jCost c a

Fig. 6 shows
e average sim
up (b) include

COST-A

t report pairs
developer. Ba

ng since this v
of 4 accordin

Fig. 5. Resul

ort groups an

 computes pa
up. First, the

fined between
the nodes by
s are the unit o
g similar bug

g cost metric o
g reports. CBA
cost of a repor
mum values (h

ying the spann
ost of the SRG

()
i

B i
b g

Cost b




eturns the min
ause these SRG
…, gr}. This

tal cost of bug

,

(
j

G
g c

Cost g


 
a

s three groups
milarity, 0.75. E

es three dupli

AWARE CLUSTER

with scores o
ased on the re
value indicate

ng to the result

lts of similarity

nd their read

ir-wise simila
approach bui
a pair of bug
edges, the ap

of clustering.
reports togeth

of bug reports
AC uses a max
rt group. The
here, similarity

ning tree of a
G. Let g be a s

(,) ()i jb b g i j

Sim
  

 

nimum value b
Gs are the uni
makes it easie
g reports in c

).g

of bug report
Every pair of
cate bug repo

RING OF BUG R

of 4 and 5 we
esults, we sele
es that at leas
ts shown in Fi

as evaluated by

ding costs

arity of bug re
ilds a graph in
g reports (b1
pproach identi

her may take
 in a group ra
ximum spann
algorithm ide
y), that conne

an SRG g, the
set of reports

(,) mini jm b b 

between x and
it of clustering
er to calculate
cluster ca,j for

ts, among wh
f bug reports i
orts having 1.

EPORTS

ere positive to
ected 0.86 as th
st 90% of rep
ig. 5.

y developers.

eports, the app
n which bug
and b2) if Sim
ifies cliques (

less time, it i
ather than com
ning tree algor
ntifies the min

ects all nodes i

e approach use
{b1, b2, …, bk

n{ (),BCost b Co

d y (x, yR).
g, ca,j can be r
e the reading c

a certain ass

hich groups (a
in group (a) h
.0 similarity i

o be dealt with
he threshold v

port pairs rece

proach put sim
reports are no

m(Vb1, Vb2) > 0
(i.e., SRGs) in

is necessary to
mputing the sum
rithm [43] to c
nimum numbe
in the group w

es Eq. (9) to c
k}:

()}B jost b

re-defined as
cost of cluster
ignment a ca

) and (b) have
as 0.75 simila
n each pair w

187

h to-
value
eived

milar
odes.
0.86.
n the

o re-
um of
com-
er of
with-

com-

(9)

a set
r ca,j.

an be

(10)

e the
arity.
while

188

the o
simil
grou
ports
(9) p

F

5.4 R

Algo
rithm
subs
can p
mic m

maxi
rate.
inpu
chro

initia
prod
size
num
duce
for m
chro
repro
moso
repla

and
algor
P.

tatio

others have 0.
lar to that of

ups (a) and (b
s should be cl
produces exact

Fig. 6. Two type

Report Cluste

Based on the

orithm 1 to sea
m that takes a
et of report g
provide the p
mutation rate
To execute A

imum numbe
In addition, t

uts. Using the
mosome in th
Algorithm 1

al_population
duce children

by multiplyin
mber of genera
es children_siz
more details):
mosomes, p1
oduce offsprin
ome with the
ace the one of
By comparin
a weak one o
rithm conduct

The remaind
n operators ne

JAEKWON L

5 similarity fo
f group (c), w

b). This is bec
lose to the cos
tly the same r

(a)
es of situation h

ering

e reading cost
arch for nearly

a set of bug r
groups, where
opulation size
as parameters

Algorithm 1,
er of generatio
the algorithm
ese parameter
he population,

starts with po
n function. Th

and to find th
ng rc and pop
ations reaches
ze individuals
 (1) the selec
and p2 (2) the
ng and (3) the
probability rm

f their parents
ng the fitness
f the parents
ts a replace op

der of this sect
ecessary for A

LEE, DONGSUN

or each. Howe
which has a
cause the total
st of one bug
esult as well.

having the same

(section 5.2)
y optimized c
eport groups
m is the pote

e, maximum g
s.
we need five
ons, crossove
takes a set of
rs and input
which is the c

opulation_size
hese chromoso
he best soluti
pulation_size.
s generation_m
s by using the
ction operator
e crossover op
e mutation op
m. rm is adjust
with the lowe
values, the al
to eliminate in
peration that d

tion explains
Algorithm 1.

KIM AND WOOS

ever, group (b
0.25 lower a
l reading cost
report. The re

(b)
e average simil

and report gr
clusters of bug
and gives m

ential develop
generations, c

e parameters:
er/mutation ra
f bug reports a

values, the a
clustering info
e of arbitrary
omes are cons
ion. The algor
 The populat
max. In each

e following th
r takes two in
perator combin
perator chang
ted by rdm for
er fitness valu
lgorithm then
nto Pdeprecated.

deletes Pdepreca

the representa

SUNG JUNG

b) should have
average simila
t of the three
eading cost ca

(c)

arity but differe

roups (section
g reports. This
clusters that

pers. The user
crossover rate

the size of th
ates, and the d
and the numbe
algorithm retu
ormation of th
chromosomes
sidered as bas
rithm then ini
tion, P, is rep

generation, t
hree operators
ndividuals fro
nes two paren
es digits of th
r each generat
e [44].

n puts the offsp
After generat

ated from P and

ation, fitness

e a reading co
arity compare
duplicate bug

alculated from

ent reading cost

n 5.3), CBAC
s is a genetic a
contain a spe

r of this algor
, and initial/d

he population
dynamic muta
er of develope
urns a best-so
he reports.
s generated by
se population
itializes child

produced until
he algorithm
(see section 5

om P to be pa
nt chromosome
he offspring c
tion. All offsp

pring into Pch

ting offspring
d adds Pchildren

function, and

ost w
ed to
g re-

m Eq.

t.

uses
algo-
ecific
rithm
dyna-

n, the
ation

ers as
o-far

y the
P to

dren_
l the
pro-

5.4.3
arent

mes to
chro-
pring

children
g, the
n into

mu-

COST-AWARE CLUSTERING OF BUG REPORTS

189

Algorithm 1: Algorithm for cost-aware balanced clustering of bug reports

Input: R: a set of bug reports
Input: D: the number of developers (i.e., the number of clusters)
Output: solution: best-so-far chromosome (i.e., clusters)
Param: population_size: the size of population
Param: generation_max: the maximum number of generations
Param: rc: crossover rate
Param: rm: mutation rate

1 P  initial_population (population_size, R, D);
2 children_size  population_size  rc; //The number of solutions will be created in a

generation.
3 for generation  1 to generation_max do
4 Pchildren  {}; //Solutions which is created in this generation
5 Pdeprecated  {}; //Solutions which will be removed in this generation
6 for cnt  1 to children_size do
7 p1, p2  selection(P) offspring  crossover(p1, p2)
8 if random() < rm then
9 //mutation will be applied as rm probability.

10 offspring  mutation(offspring)
11 end
12 Pchildren  Pchildren  offspring
13 deprecated  min_fitness(p1, p2);
14 Pdeprecated  Pdeprecated  deprecated;
15 end
16 Preplace(P, Pchildren, Pdeprecated);
17 rmrm  rdm;
18 end
19 solution  best_individual(P);
20 return solution

5.4.1 Representation

Fig. 7 shows the chromosome and the clusters used in our approach. The chromo-
some can represent one possible assignment of SRGs to clusters, which is actually an
assignment of bug reports to clusters, as described in Eq. (1) of section 4.1. The position
and digit of a gene indicate the indexes of an SRG and the cluster to which the SRG is
assigned, respectively. Thus, the bug reports in an SRG are always assigned to an identi-
cal cluster.

For example, the chromosome in Fig. 7 (a) indicates that the five SRGs are assigned
to clusters 2, 1, 2, 4 and 3. Fig. 7 (b) is a graphical representation of clusters based on the
chromosome shown in Fig. 7 (a). Note that reports in a single SRG are assigned to a sin-
gle cluster.

190

5.4.2

in a
appr
ment

wher
(10).
cost
moso

5.4.3

ducti
selec
has a

the s
fixed
and v

empt
distr
repai
task
is em
moso
clust
the p
If th
respe

Fig. 7.

2 Fitness

The fitness fu
chromosome

roach uses the
t a:

()
m

f a
j




re a is a chrom
. This fitness
for the repor

ome (i.e., m c

3 Operators

In this appro

ion of chromo
cts an individu
a higher proba
Uniform cros

same probabil
d at 0.5 so tha
vice versa.
To avoid em

ty cluster. Sin
ribution, a chr
irs the chromo
searches for t

mpty in the of
ome from the
ters in the offs
parents. Howe
his worst case
ect to the num

JAEKWON L

(a)
Representation

function in our
is balanced w

e following eq

,{ (
1 C j

m
Cost C

 a

mosome with
function calc

t groups in a.
lusters) that m

oach, we use s
osomes. Roul
ual based on
ability of bein
ssover [46] is
lity of contribu
at one offsprin

mpty clusters, t
nce the goal o
romosome wit
osome by usin
the leftmost g
ffspring. We th
e first parent.
spring. In the
ever, we regar
occurs too fr

mber of reports

LEE, DONGSUN

)
n of a chromoso

r approach ev
with respect to
quation to com

)}

length m whil
culates the sta
. The goal of

minimizes the

selection, cros
ette selection
its fitness val
g selected.
s used for the
uting to the re

ng has approxi

this approach
of this approac
th any empty
ng parent chro
ene of the firs
hen copy it in
This task rep

worst case, it
rd this to be b
requently, the
s n.

KIM AND WOOS

ome and its clus

valuates wheth
o the cost of b
mpute the fitn

le CostC(Ca,j)
andard deviati
f Algorithm 1
value of Eq. (

ssover, and m
[45] is used

lue; an individ

e crossover op
eproduction o
imately half o

repairs a chro
ch is to find m
cluster is obv

omosomes, as
st parent, whic
nto the same l
peats the repa
might make o
etter than chro
number of cl

SUNG JUNG

(b)
sters (cluster siz

her a set of cl
bug reports in
ness value for

is the function
ion of the ent
is to find a n

(11).

mutation opera
for the select

dual with a hi

perator in whi
of offspring. T
f the genes fro

omosome if it
m clusters wit
viously abnorm
s shown in Fig
ch is assigned
location in the
airing until th
one offspring
omosomes wi
lusters m will

ze = 4).

usters represe
n the clusters.
r a certain ass

n described in
tire group rea
near-optimal c

tors for the re
ion operator.
igher fitness v

ich each gene
The mixing rat
om the first pa

t can result in
th a balanced
mal. Thus, CB
g. 8. The repai
 to the cluster

e offspring’s c
here are no em
identical to on
ith empty clus
be too large

ented
 The
sign-

(11)

n Eq.
ading
chro-

epro-
This

value

e has
tio is
arent

n any
cost

BAC
airing
r that
chro-
mpty
ne of
sters.
with

prev
every
exam

expe
CBA
guid
The
usefu

 RQ
 RQ

6.1 E

to ev
from
syste

 # o
 thr
 ma
 siz
 sel
 cro
 mu

For the muta
vent radical m
y generation,

mple, the rate

This section
eriments; and
AC performs w
de users of our

study designe
fulness of our a

In particular,

Q1: What are a
Q2: Is CBAC u

RQ1 and RQ

Experiments

This section

valuate our a
m July 1, 2013
em and the list
Basically, we

of clusters (i.e
reshold value
aximum gener
ze of populatio
lection operato
ossover operat
utation operato

COST-A

Fig. 8. Proc

ation operator,
mutation, the i

it is multiplie
is adjusted to

describes the
(2) a user stu

when differen
r approach. Th
ed and carried
approach.
 our evaluatio

appropriate va
useful for a ba

Q2 are answere

describes the
approach. In t
3 to July 30,
t of the reports
e used the foll

e., developers)
for report grou
ration: 1,000
on: 1,000
or: Roulette W
tor: uniform c
or: uniform m

AWARE CLUSTER

ess of repairing

, the approach
initial mutatio
ed by 0.998 to
0.006 after 1,

6. EVALU

evaluation res
udy. The exp
t parameters a
he user study
d out a survey

on addressed th

alues for param
alanced distrib

ed in sections

results of our
these experim
2013. They w

s is available a
lowing parame

: 25
uping: 0.86

Wheel (selectio
rossover (cros

mutation (initia

RING OF BUG R

g an incorrect ch

h utilizes the d
on rate in this
o dynamically
,000 generatio

UATION

sults of CBAC
periments wer
are given. The
examined the

y in which we

the following r

meters?
bution of bug

6.1 and 6.2, r

r experiments
ments, we use
were collected
at: https://sites
eter values as

on pressure=4
ssover rate=0
al rate=0.043)

EPORTS

hromosome.

dynamic muta
s approach is
y change the m
ons.

C. The evalua
re conducted t
e results of th
e effectivenes
e asked 60 dev

research ques

reports with r

espectively.

s with various
d 1,047 bug

d from Mozill
s.google.com/s

a baseline:

4)
.9)

ation rate [31]
set to 0.043.

mutation rate.

ation consists o
to figure out
e experiments
s of the appro
velopers abou

tions:

respect to cost

s parameter va
reports subm

la’s issue trac
site/geneticcb

191

]. To
. For
. For

of (1)
how

s can
oach.
ut the

t?

alues
mitted
cking
bac/.

192

from
for t
clust
= 30
the p

cross
paren
the o

0.40
(out
was
appr
Note
bette

First, we use
m 100 to 1,500
the number of
ters while P >
0, respectively
population (P)

Fig. 9

We then vari
sover rate det
nt chromosom
operator takes

As shown in
. We varied t
of 1,000 indi
improved rap

roach can prod
e that this can
er solutions bu

(a
Fig. 1

When the s

JAEKWON L

ed different po
0. In addition,
f clusters (m)

> 700, P > 1,00
y. This implies
) when applyin

9. Fitness value

ied the crosso
ermines the p

mes of the cro
a proportiona

n Fig. 10 (a), t
the rate from
ividuals) after

pidly but it did
duce appropria
n be the mini
ut could take m

a) Crossover ra
10. Fitness valu

ize of clusters

LEE, DONGSUN

opulation sizes
 we evaluated

). When m =
00, and P > 1
s that it is nec
ng our approa

es after 1,000 ge

over and muta
ortion of indiv
ssover operato

ally longer tim
the fitness val
0.05 to 0.95
r 1,000 gener
d not significa
ate clusters wh
mum crossov
more time.

te
es after 1,000 g

s is 25, an app

KIM AND WOOS

s. As shown i
d six different
5, P > 200 i
,300 are suffic
cessary to pro
ach to a larger

enerations for e

ation rates wh
viduals in the

tor (see section
me.
lue was satur
and measured

rations. From
antly change a

when the crosso
ver rate. Certa

generations for

propriate size o

SUNG JUNG

in Fig. 9, we v
t numbers ran
s sufficient to
cient for m =

oportionally in
number of clu

each population

hen reproduci
e population th
n 5.4.3). If th

ated when the
d the fitness v
0.05 to 0.40,

after 0.45. Thi
over rate is ap
ainly, a highe

(b) Mutatio
each population

of population

varied the size
nging from 5 t
o find approp
15, m = 25, an

ncrease the siz
usters (m).

n size.

ing offspring.
hat will be use
is rate is too h

e crossover ra
value of the e
, the fitness v
is implies that

pproximately 0
er rate can lea

n rate
n size.

is 1,000.

e (P)
to 30
priate
nd m
ze of

 The
ed as
high,

ate is
elitist
value
at our
0.40.
ad to

Fig. 1

show
How
0.04
proa

muta
decre
incre
be 0
Sinc
this
this
deno
noted

For t
On t
value
tions
that

proa
1,00
and d
erati

11. Results of d
cally adjust

We measured

wn in Fig. 10
wever, the fitn

3. Using a hi
ach can use [0.

In addition t
ation rates as w
ement rates, t
ement rates, w
.116 if the dy
e the final rat
setting by D
is denoted by

oted them by
d by Fixed.
Fig. 11 show
the increment
the other hand
es in early ge
s. In particular
gradually redu

After investi
ach to the subj
0, maximum
dynamic muta
on (we repeat

When the
our approac

Dynamicall

COST-A

different setting
t the mutation ra

d the fitness v
(b). Contrary

ness value sh
gher rate doe
.03, 0.05] as th

to the fixed m
well, with res
two incremen

we used two di
ynamic rate is
te is approxim
3. Similarly,
y D7. We ap
I3 and I7,

ws the results o
t settings (i.e.
d, the decrem
enerations. Ho
r, D showed
ucing the mut

gating approp
bjects explaine
generation =
ation rate = D
ted our approa

crossover and
ch shows its b

ly decreasing

AWARE CLUSTER

gs used todynam
ate.

value while va
to the crosso

owed the bes
s not result in
he mutation ra

mutation rate,
ults shown in

nt rates, and a
ifferent dynam
1.001 and the

mately three ti
the final rate

pplied similar
 respectively.

of applying di
., I and I),
ent settings (i
owever, they
the best fitnes

tation rate can

priate paramet
ed in section
1,000, crossov

D7 (= 0.998).
ach 10 times a

d mutation ra
best performan

mutation rates

RING OF BUG R

mi- Fig. 12. Fit
pr

arying the mut
over rate, the f
st performanc
n better perfo
ate to obtain a

we compare
n Fig. 11. We t
a fixed rate. F
mic rates. For
e initial rate is
imes higher th
e will be 0.31
dynamic rate

. The fixed m

ifferent value
, their fitness
i.e., D3 and
outperformed
ss value after

n improve the p

ters as descri
6.1: size of c
ver rate = 0.9
 Fig. 12 show
and selected t

ates are 0.95
nce.

s can achieve

EPORTS

tness value of e
ropriate parame

tation rate fro
fitness value w

ce when the m
rmance. Thus

an appropriate

d the perform
tried five diffe

For the dynam
example, the
s 0.043 after 1
han the initial
7 if the dyna

es to the incre
mutation rate (

s to the dynam
values were
D7) resulte

d other setting
1,000 generat
performance o

bed above, w
clusters = 25,
5, initial muta

ws the fitness v
the best one).

and 0.043, re

better cluster

each generation
ters.

m 0.003 to 0.
was not satura
mutation rate
s, users of our
e set of cluster

mance of dyna
erent settings:

mic decrement
mutation rate

1,000 generati
l rate, we den
mic rate is 1.

ement settings
(i.e., 0.043) is

mic mutation
quickly satura
d in worse fit
gs in later gen
tions. This imp
of our approac

we applied our
population si

ation rate = 0.
value of each
The final valu

espectively,

s.

193

n for ap-

1, as
rated.

was
r ap-
rs.

amic
: two
t and
e will
tions.
noted
.002;
s and
s de-

rate.
ated.
tness
nera-

mplies
ch.

r ap-
ize =
.043,
gen-

ue of

194

fitne

plyin
bug
pend
one s

clust
mate
repo

Fig.

6.2 U

ers f
abou
sults

first
smal
ident
lever

that t
them
majo
fixin
most

ess was 0.0693
In addition, w

ng our approa
reports. The v

dent reports th
similar report
Fig. 14 repre

ter of bug rep
ely 70. This in
rts to a specif

13. Results of
Mozilla.

User Study

This section
from 15 differ
ut their curren
s of our approa

The analysis
question (Q1)

ll number of
tifying similar
rage systemat
For report di
their organiza

m stated that t
ority still answ
ng effort is the
t frequent resp

JAEKWON L

36 and the exp
we visualized
ach. Fig. 13 s
value of the g

hat have no sim
.
esents the resu
ports. The aver
ndicates that o
fic number of

grouping for bu

presents the r
rent companie
nt practice of
ach. The ques

s results are in
), there are sp
participants (
r (or relevant)
ic methods wh
istribution (Q3
ations uniform
the current pr
wered that it is
e first criterio
ponse.

LEE, DONGSUN

periment took
d the results o
shows a partia
grouping thres
milar reports w

ults of cluster
rage of the to
our approach
developers.

ug reports of

results of our
s. Among the
distributing b
tions and distr
nterpreted as

pecific roles to
(13%) answer
) reports (Q2),
hile most deve
3), more than

mly distributed
ractice of dist
s not sufficien
on of report d

KIM AND WOOS

k 15 minutes (w
of bug report
al view of the
shold was 0.8
while red nod

ring using our
otal reading co

can uniforml

Fig. 14. Resu
of M

user study. T
em, 30 develop
bug reports an
tribution of the

follows: Acc
o distribute bu
red that deve
, some develo
elopers rely o

n half of the p
d bug reports t
tributing repo
ntly fair. 40%
distribution (Q

SUNG JUNG

wall-time).
grouping and
e results after

86. White nod
des are reports

r approach. E
ost of each clu
y and efficien

ults of clustering
Mozilla.

This study recr
pers responde

nd the qualitat
e answers are
cording to the
ug reports to d
elopers perform
opers (20%) re
on manual iden
articipants (53
to developers.
rts is likely t

% of participan
Q4). Reading c

d clusters after
r grouping sim
des represent i
s that have at

Each rectangle
uster was appr
ntly distribute

g for the bug rep

ruited 60 deve
d. We asked t
tive evaluation
listed in Tabl

e responses to
developers. On
m this task. H
esponded that
ntification.
3%) did not a
 Although 33%
o be uniform

nts stated that
cost is the sec

r ap-
milar
inde-
least

e is a
roxi-

e bug

ports

elop-
them
n re-
le 3.
o the
nly a
How
they

agree
% of

m, the
bug-
cond

COST-AWARE CLUSTERING OF BUG REPORTS

195

Table 3. Five questions and answers for user study.
Q1: Who does distribute bug reports?
Distributor (70%) Developer (13%) Other(17%)
Q2: How to identify similar bug reports?
Manual identification by distributors (63%)
Manual identification by developers (13%)
Systematic identification (20%)
Other (3%)
Q3: Are bug reports uniformly distributed in the current practice?
Strongly agree (10%) Agree (23%)
Neither agree nor disagree (53%)
Disagree (10%) Strongly disagree (3%)
Q4: What are the criteria of uniform report distribution?
Similar number of reports (3%) Similar reading cost (27%)
Similar bug fixing time (40%) Other (30%)
Q5: Is CBAC useful for bug report distribution?
Strongly agree (10%) Agree (57%)
Neither agree nor disagree (20%)
Disagree (13%) Strongly disagree (0%)

We then asked them about our approach. First, 67% of the participants stated that
the results of CBAC were helpful for obtaining a balanced report distribution. Negative
responses accounted for only 13%. In addition, the participants provided several sugges-
tions: addressing bug-fixing cost [9] and considering developer expertise and authorship
[16, 47].

6.3 Threats to Validity

 Construct validity: The reading cost of bug reports may not be strongly correlated
with bug-fixing time in practice. However, contemporary estimation techniques [7, 8,
11] for bug-fixing effort highly depend on imprecise bug-fixing data because develop-
ers often do not accurately record their effort and time in resolving bugs. Document
reading cost can provide at least a guide for determining estimated effort to understand
bugs, and this is one of the major tasks in bug resolution.

 Internal validity: Our equation for reading cost estimation (Eq. 6) might not precisely
represent the actual complexity of a document. Since bug reports have different char-
acteristics compared to other types of documents such as technical manuals and legal
statements, general-purpose methods for computing reading cost might not work.

 External validity: Our approach might show different performance depending on sub-
jects or closed-source projects. Since our evaluation was performed only on Mozilla’s
Firefox project, applying CBAC to other projects may yield different results.

7. CONCLUSION

We presented an approach and tools aimed at distributing bug reports to developers

Developers stated that our approach can contribute to balanced report dis-
tribution.

JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

196

in a cost-effective manner, by considering their costs to provide workload balancing.
First, we extracted bug reports from open source projects. Similar report groups that can
be efficiently tackled by the same developer were then generated based on their similari-
ty and dependency. Next, GA-based experiments to find a near-optimal set of clusters
were conducted to provide a balanced distribution of bug reports. The standard deviation
of the cluster costs was used as a fitness function in the optimization process.

The analyzed data from open source projects revealed that a large number of bug
reports are concentrated on a small group of specific developers. However, overall
bug-fixing time can be delayed if bug reports are distributed to developers in an imbal-
anced manner.

We also evaluated our approach by carrying out a survey targeting 30 developers from
15 companies. The results showed that 67% of the participants found our method helpful
for triaging bugs to developers. The proposed approach, because it does not utilize the
fixing history, can also provide balanced opportunity to both existing and new developers.

When a developer is organizing a development team, our approach can be effec-
tively applied to assign a massive number of bugs to be fixed in a given limited time.
From that point of view, our approach is also related to the optimized scheduling problem.

In summary of our contribution, we suggested a novel cost metric to comprehend a
set of bugs by considering similarity and dependency of the bug reports. The bugs can be
assigned to each developer in a balanced manner based on the metric. Thus, our approach
can be effectively used in the development process, from the manager’s perspective.
Moreover, we used Kinciad’s document readability [10] to calculate the reading cost of
bug reports. This can be replaced with any other measure in the future because our
method can be applied independently of the metric. And using our approach, the struc-
ture of the development team can also be generated from a set of bug reports, by recur-
sively applying our method with a modified threshold or by using relations between the
bugs to find larger clusters.

Recently, in the field of Granular Computing [48, 49], many researchers have been
proposing new granular algorithms such as clustering [50, 51], classification [52, 53],
rule-based algorithm [54, 55], and other various approaches [56-58]. In the future, we
will improve the way to find optimal solutions by applying those algorithms.

REFERENCES

1. R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so complicated? Sim-
ple term filtering and weighting for location based bug report assignment recommen-
dation,” in Proceedings of the 10th Working Conference on Mining Software Repos-
itories, 2013, pp. 2-11.

2. C. R. Reis and R. P. Fortes, and M. Fortes, “An overview of the software engineer-
ing process and tools in the Mozilla project,” in Proceedings of Open Source Soft-
ware Development Workshop, 2002, pp. 155-175.

3. G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug tossing
graphs,” in Proceedings of the 7th Joint Meeting of European Software Engineering
Conference and ACM Symposium on the Foundations of Software Engineering, 2009,
pp. 111-120.

COST-AWARE CLUSTERING OF BUG REPORTS

197

4. D. Cubranic and G. C. Murphy, “Automatic bug triage using text categorization,” in
Proceedings of the 16th International Conference on Software Engineering and
Knowledge Engineering, 2004, pp. 92-97.

5. J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Proceedings of
the 28th International Conference on Software Engineering, 2006, pp. 361-370.

6. H. Naguib, N. Narayan, B. Brugge, and D. Helal, “Bug report assignee recommen-
dation using activity profiles,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, 2013, pp. 22-30.

7. A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy set and
cache-based approach for bug triaging,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering, 2011, pp. 365-375.

8. J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S. Kim, “COST RIAGE: A cost-
aware triage algorithm for bug reporting systems,” in Proceedings of the 25th AAAI
Conference on Artificial Intelligence, 2011, pp. 139-144.

9. C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it take to fix
this bug?” in Proceedings of the 4th International Workshop on Mining Software
Repositories, 2007, pp. 1-8.

10. J. P. Kincaid, L. R. P. Fishburne, R. L. Rogers, and B. S. Chissom, “Derivation of
new readability formulas (Automated readability index, fog count, and flesch reading
ease formula) for navy enlisted personnel,” Naval Technical Training: Naval Air
Station Memphis, 1975, pp. 8-75.

11. A. Zeller, Why Programs Fail: A Guide to Systematic Debugging, Morgan Kauf-
mann Publishers Inc., CA, 2005.

12. M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating bug report data for
feature tracking,” in Proceedings of the 10th Working Conference on Reverse Engi-
neering, 2003, pp. 90-99.

13. D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a vocabulary-
based expertise model of developers,” in Proceedings of the 6th IEEE International
Working Conference on Mining Software Repositories, 2009, pp. 131-140.

14. P. Bhattacharya, I. Neamtiu, and C. R. Shelton, “Automated, highly accurate, bug
assignment using machine learning and tossing graphs,” Journal of Systems and
Software, Vol. 85, 2012, pp. 2275-2292.

15. H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning change requests
to software developers,” Journal of Software: Evolution and Process, Vol. 24, 2012,
pp. 3-33.

16. J. Xiao and W. Afzal, “Search-based resource scheduling for bug fixing tasks,” in
Proceedings of the 2nd International Symposium on Search Based Software Engi-
neering, 2010, pp. 133-142.

17. N. Bettenburg, R. Premraj, and T. Zimmermann, “Duplicate bug reports considered
harmful … really?” in Proceedings of IEEE International Conference on Software
Maintenance, 2008, pp. 337-345.

18. P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate defect re-
ports using natural language processing,” in Proceedings of the 29th International
Conference on Software Engineering, 2007, pp. 499-510.

19. X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting dupli-

JAEKWON LEE, DONGSUN KIM AND WOOSUNG JUNG

198

cate bug reports using natural language and execution information,” in Proceedings
of the 13th International Conference on Software Engineering, 2008, pp. 461-470.

20. C. Sun, D. Lo, X. Wang, J. Jiang, and S. C. Khoo, “A discriminative model approach
for accurate duplicate bug report retrieval,” in Proceedings of the 32nd International
Conference on Software Engineering, 2010, pp. 45-54.

21. A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun, “Duplicate bug re-
port detection with a combination of information retrieval and topic modeling,” in
Proceedings of the 27th IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2012, pp. 70-79.

22. C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate retrieval of dupli-
cate bug reports,” in Proceedings of the 26th IEEE/ACM International Conference
on Automated Software Engineering, 2011, pp. 253-262.

23. K. Somasundaram and G. C. Murphy, “Automatic categorization of bug reports us-
ing latent Dirichlet allocation,” in Proceedings of the 5th India Software Engineering
Conference, 2012, pp. 125-130.

24. T. Zhang and B. Lee, “A bug rule based technique with feedback for classifying bug
reports,” in Proceedings of the 11th International Conference on Computer and In-
formation Technology, 2011, pp. 336-343.

25. Y. J. Horng, S. M. Chen, Y. C. Chang, and C. H. Lee, “A new method for fuzzy in-
formation retrieval based on fuzzy hierarchical clustering and fuzzy inference tech-
niques,” IEEE Transactions on Fuzzy Systems, Vol. 13, 2005, pp. 216-228.

26. N. Y. Wang and S. M. Chen, “Temperature prediction and TAIFEX forecasting
based on automatic clustering techniques and two-factors high-order fuzzy time se-
ries,” Expert Systems with Applications, Vol. 36, 2009, pp. 2143-2154.

27. S. M. Chen, N. Y. Wang, and J. S. Pan, “Forecasting enrollments using automatic
clustering techniques and fuzzy logical relationships,” Expert Systems with Applica-
tions, Vol. 36, 2009, pp. 11070-11076.

28. H. Szu and R. Hartley, “Fast simulated annealing,” Physics Letters A, 1987, pp. 157-
162.

29. M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Computa-
tional Intelligence Magazine, Vol. 1, 2006. pp. 28-39.

30. S. M. Chen and N. Y. Chung, “Forecasting enrollments using high-order fuzzy time
series and genetic algorithms,” International Journal of Intelligent Systems, Vol. 21,
2006, pp. 485-501.

31. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd
ed., Springer-Verlag, London, UK, 1996.

32. S. M. Chen and T. H. Chang, “Finding multiple possible critical paths using fuzzy
PERT,” IEEE Transactions on Systems, Man, and Cybernetics  Part B: Cybernetics,
Vol. 31, 2001, pp. 930-937.

33. S. M. Chen and C. Y. Chien, “Parallelized genetic colony systems for solving the
traveling salesman problem,” Expert Systems with Applications, Vol. 38, 2011, pp.
3873-3883.

34. P. W. Tsai, J. S. Pan, S. M. Chen, B. Y. Liao, and S. P. Hao, “Parallel cat swarm
optimization,” in Proceedings of International Conference on Machine Learning and
Cybernetics, 2008, pp. 3328-3333.

35. P. W. Tsai, J. S. Pan, S. M. Chen, and B. Y. Liao, “Enhanced parallel cat swarm op-

COST-AWARE CLUSTERING OF BUG REPORTS

199

timization based on the Taguchi method,” Expert Systems with Applications, Vol. 39,
2012, pp. 6309-6319.

36. J. E. BellaPatrick and R. McMullen, “Ant colony optimization techniques for the ve-
hicle routing problem,” Advanced Engineering Informatics, Vol. 18, 2004, pp. 41-48.

37. D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony optimization for resource-
constrained project scheduling,” IEEE Transactions on Evolutionary Computation,
Vol. 6, 2002, pp. 333-346

38. R. Flesch, “A new readability yardstick,” Journal of Applied Psychology, Vol. 32,
1948, pp. 221-233.

39. L. Si and J. Callan, “A statistical model for scientific readability,” in Proceedings of
the 10th International Conference on Information and Knowledge Management,
2001, pp. 574-576.

40. R. P. L. Buse and W. R. Weimer, “Learning a metric for code readability,” IEEE
Transactions on Software Engineering, Vol. 36, 2010, pp. 546-558.

41. G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,”
Communications of the ACM, Vol.18, 1975, pp. 613-620.

42. G. Salton and M. J. McGill, Introduction to Modern Information Retrieval, McGraw-
Hill, Inc., NY, 1986.

43. J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling sales-
man problem,” in Proceedings of the American Mathematical Society, Vol. 7, 1956,
pp. 48-50.

44. D. J. Cavicchio, “Adaptive search using simulated evolution,” Ph.D. Thesis, De-
partment of Computer Science, University of Michigan, 1970.

45. A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochastic acceptance,”
Physica A: Statistical Mechanics and its Applications, Vol. 391, 2012, pp. 2193-2196.

46. G. Syswerda, “Uniform crossover in genetic algorithms,” in Proceedings of the 3rd
International Conference on Genetic Algorithms, 1989, pp. 2-9.

47. F. Servant and J. A. Jones, “WhoseFault: Automatic developer-to-fault assignment
through fault localization,” in Proceedings of the 34th International Conference on
Software Engineering, 2012, pp. 36-46.

48. Y. Yao, “A triarchic theory of granular computing,” Granular Computing, Vol. 1,
2016, pp. 145-157.

49. D. Ciucci, “Orthopairs and granular computing,” Granular Computing, Vol. 1, 2016,
pp. 159-170.

50. G. Peters and R. Weber, “DCC: A framework for dynamic granular clustering,” Gran-
ular Computing, Vol. 1, 2016, pp. 1-11.

51. P. Lingras, F. Haider, and M. Triff, “Granular meta-clustering based on hierarchical,
network, and temporal connections,” Granular Computing, Vol. 1, 2016, pp. 71-92.

52. M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Multi-objective evolu-
tionary design of granular rule-based classifiers,” Granular Computing, Vol. 1, 2016,
pp. 37-58.

53. H. Liu and M. Cocea, “Granular computing-based approach for classification to-
wards reduction of bias in ensemble learning,” Granular Computing, Vol. 2, 2016,
pp. 131-139.

54. H. Liu, A. Gegov, and M. Cocea, “Rule-based systems: A granular computing per-
spective,” Granular Computing, Vol. 1, 2016, pp. 259-274.

200

55.

56. A
l

57. D
t

58. L
a
2

S. S. S. Ahma
study in struct
A. Skowron,
lar Computing
D. Dubois an
ting,” Granul
L. Livi and A
analysis of no
20.

JAEKWON L

ad and W. Ped
tural model co
A. Jankowski
g, Vol. 1, 201

nd H. Prade, “
lar Computing

A. Sadeghian,
on-geometric i

Jaek
Computer
in 2013 a
the Depar
versity. H
and searc

Don
degrees i
versity, S
currently
His resea
matic pat
gineering

Woo
in Compu
sity, Kore
SK UBCa
at Softwa
2011 to 2
Computer
2016. He
of Educat
interests i
software s

LEE, DONGSUN

drycz, “The de
ompression,” G
i, and S. Dutt
6, pp. 95-113

“Bridging gap
g, Vol. 1, 2016
“Granular com
input spaces,”

kwon Lee (李
r Engineering
and 2015, resp
rtment of Com

His research in
h-based softw

ngsun Kim (金
n Computer S

Seoul, Korea,
a Research A

arch interests
tch generation

g (SBSE).

osung Jung (
uter Science a
ea, in 2003 an
are from 1998
are Capability
2012. He was
r Engineering,
is currently a

tion, Seoul Na
include softwa
system and da

KIM AND WOOS

evelopment of
Granular Com
ta, “Interactiv
.
s between sev
6, pp. 115-126
mputing, com
” Granular Co

李在權) receive
g from Chungb
pectively. Cur
mputer Engine
nterests includ

ware engineerin

金東鮮) receiv
Science and E
in 2003, 2005
Associate at t
include mini

n, static analy

(鄭羽盛) recei
and Engineerin
nd 2011, respe
8 to 2002. He w

Development
an Associate

, Chungbuk N
an Associate P
ational Univer
are education,

ata mining.

SUNG JUNG

f granular rule
mputing, Vol.
e granular com

veral forms of
6.

mputational int
omputing, Vo

ed the B.S. an
buk National U
rrently, he is a
eering, Chungb
de mining sof
ng (SBSE).

ved the B.E.,
Eengineering f
5, and 2010, r
the University
ing software r
ysis, search-b

ved his B.S. a
ng from Seoul
ectively. He w
was a Senior R
t Center in LG
Professor at t

National Unive
Professor at the
rsity of Educa
, software eng

e-based system
2, 2017, pp. 1
mputing,” Gr

f granular com

telligence, and
l. 1, 2016, pp

nd M.S. degree
University, Ko
a Ph.D. studen
buk National
ftware reposito

, M.S., and P
from Sogang
respectively. H
y of Luxembo
repositories, a
ased software

and Ph.D. deg
l National Un
as a Research
Research Engi
G Electronics f
the Departmen

ersity from 201
e Graduate Sc
ation. His rese
gineering, adap

ms: a
-12.

ranu-

mpu-

d the
p. 13-

es in
Korea,
ent in

Uni-
tories

Ph.D.
Uni-

He is
ourg.
auto-
e en-

grees
niver-
her in
ineer
from
nt of
12 to
chool
earch
ptive

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

