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The inefficient distribution of bugs to developers is increasing the cost of software 

development and maintenance. In efforts to tackle this issue, various studies have been 
carried out to recommend suitable developers for specific bugs. These studies often lev-
erage similarity between bug reports; for example, if a developer addressed a bug report 
similar to a newly incoming report, that developer can be suitable to fix the bug de-
scribed in the new report. However, the existing studies have resulted in imbalanced dis-
tribution  a large number of bugs can be concentrated in a small number of developers. 
In this paper, we propose a novel approach to achieve a cost-aware distribution of bug 
reports to support workload balancing. Our approach is composed of two phases. First, a 
set of similar report groups composed of strongly related bugs is generated based on their 
similarity and dependency. Clusters are then created by grouping the similar report 
groups so that each cluster can have similar cost (i.e., minimizing its standard deviation). 
Our approach leverages a genetic algorithm to find a near-optimal distribution of bug 
reports because it is an NP-hard problem. The experiments with 1,047 bug reports col-
lected from Mozilla’s Firefox were conducted to evaluate our approach. The results 
showed that our approach effectively provides an appropriate solution to achieve a cost- 
balanced distribution of bug reports. In addition, we carried out a user study targeting 30 
developers from 15 companies to figure out the usefulness and effectiveness of our ap-
proach. Among the participants, 67% answered that our approach is useful for triaging 
their bugs to developers. This shows the possibility for use in cases of managing or tri-
aging bugs from the project manager’s perspective.  
 
Keywords: bug report, mining software repositories, bug triage, genetic algorithm, as-
signment optimization 

1. INTRODUCTION 

The number of bugs in software projects is increasing, and they are overwhelming 
developers and maintainers. According to Shokripour’s research [1], more than 300 new 
bugs are added to the Mozilla project per day. It is thus becoming harder for bug triagers 
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to distribute the bug reports to developers properly and in a cost-effective manner. To 
support the maintenance process, ITS (Issue Tracking System) is used to manage bugs 
effectively [2]. However, with regard to the issue of the distribution bugs, ITS accompa-
nies problems from the perspective of workload balancing and the manual triaging pro-
cess. 

One of a bug triager’s important tasks is to assign bugs to appropriate developers. 
When a new bug is reported, the triager checks if it is a duplicate bug with previously 
reported bugs. It is then validated in terms of whether it contains wrong information or it 
is reproducible. Finally, the bug is assigned to a developer who is considered the most 
qualified handler for it. However, this process is tedious and can increase the cost of fix-
ing bugs because triagers should manually deal with the reports [3]. 

Researchers thus have proposed various methods to find the most suitable develop-
ers to fix given bugs, based on bug assignment histories collected from ITS [1, 4-7]. For 
example, Cubranic and Murphy [4] proposed suitable developers recommendation ap-
proach utilizing history information how those developers handled similar bug reports. 
They achieved 30% accuracy on the Firefox project by recommending 5 developers. 
However, most of researchers focused on the issue of finding a suitable developer for a 
specific bug, not considering the overall cost of tackling the bug reports or a balanced 
distribution from the assigner’s perspective.  

This could delay the project schedule and eventually increase the overall develop-
ment cost. Developers who newly join a project are rarely assigned to fix bugs because 
they have no history data in the repositories. Furthermore, the estimated cost simply 
based on history data is not precise. Notably, the precision of semi-automated triaging [1] 
decreased to 50% in a case in which only one developer was recommended. Pack et al. 
focused on reducing the cost rather than increasing the precision of triaging [8]. However, 
they only used the developer’s bug-holding time as their cost, which could include bug- 
tossing [3] time or doing-nothing time as well. 

We thus analyzed developer’s workload assuming that often a large proportion of 
bugs are assigned to a small number of specific developers. We extracted all bug reports 
of the Firefox project, and then compared the ratio of bugs that were being fixed by ac-
tive developers (which are the top 10% of developers when sorting them according to the 
number of reports assigned). The results showed that more than 50% of the bugs were 
assigned to the top 10% of the active developers on average. For the worst case, more 
than 80% of the bugs were assigned to the top 10% of active developers. Finally, we re-
alized that there is an imbalanced distribution of bug reports. 

In this paper, we propose a GA-based approach to achieve a cost-aware optimal dis-
tribution of bugs to support cost-balanced triaging. We defined the repository schema for 
the bug reports, and then implemented a set of tools to extract, analyze, and generate 
clusters of bugs for a given number of developers. The clustering process is composed of 
two phases. The first phase is generating similar report groups (SRGs) that are composed 
of strongly related bugs that are considered to have high similarity or dependency. Thus, 
they are not split into different groups in the next phase of clustering. The second phase 
is to generate clusters based on the total costs of the SRGs. In this phase, the standard 
deviation of the cluster’s cost is used as a fitness of our optimization process. 

In short, our approach entails finding a near-optimal distribution of the given bugs, 
which the distribution enables a cost-balanced assignment from the manager’s point of 
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view. Our method is thus effective when assigning a massive number of bugs to a devel-
opment team in a cost-balanced manner. 

Additionally, our method does not depend on the history data of the repositories, 
which also differentiates it from previous approaches that use such data for cost estima-
tion [8, 9]. Thus, our approach can be applied for any given set of bug reports. Based on 
the document readability [10], we also defined a reading cost metric to calculate the 
reading cost of the bugs. The cost metric can be easily enhanced without changing the 
framework of the proposed method. The results of optimization demonstrate the effec-
tiveness of our approach by showing that the standard deviation of the final bug clusters’ 
cost can reach below 0.07. We received 67% positive responses to our approach from 
developers who participated in a survey. 

We can summarize the contributions of our research as follows: 
 

 A near-optimal assignment of bugs to a group of developers can be conducted via the 
concept of load balancing. 

 A novel cost metric to comprehend a set of bug reports is defined by considering simi-
larity and dependency of bug reports. 

 A methodology including overall schema and process is provided in the case of man-
aging or triaging bugs from the project manager’s perspective.  

 
The remainder of this paper is organized as follows. Section 2 describes the motiva-

tion of our research with the analyzed distribution data of bugs in open source projects. 
Section 3 describes related work. Section 4 presents the assumptions of our research and 
formally defines the balanced distribution of bug reports. Section 5 explains in detail our 
approach to generate balanced clusters of bug reports. Section 6 shows the results of ex-
periments to evaluate the usefulness and effectiveness of our method and discusses our 
research including threats to validity. Finally, section 7 provides our conclusions. 

2. MOTIVATION 

Contemporary software projects including open source software (OSS) often em-
ploy issue tracking systems to efficiently deal with issues such as bugs and feature re-
quests. Users can submit bug reports to the system when faced with abnormal behaviors 
on a software. The submitted bug reports are assigned to developers by a triager (e.g., 
product manager). Triagers of OSS projects often assign bug reports based on developer 
expertise [5]. 

However, bug report assignment can be easily imbalanced. Jeong et al. [3] stated 
that a few developers can take too many bug reports after a small number of report toss-
ing. This imbalanced distribution may delay overall software development since this can 
impose an excessive burden on a few developers. In particular, this problem can be more 
serious because more than 300 bug reports are filed every day in many recent OSS pro-
jects [1]. 

To determine whether an imbalanced distribution occurs in OSS projects, we inves-
tigated bug reports of Mozilla Firefox†. We collected 142,217 bug reports from Mozilla’s 
issue tracking system from the beginning of the project to August 31, 2014. For each bug 

† https://bugzilla.mozilla.org/ 
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Based on the above observations, in this paper we present a novel approach, CBAC 

(Cost-aware BAlanced Clustering), to balance the distribution of bug reports. This ap-
proach takes the reading cost of each bug report into account and uses a genetic algo-
rithm to achieve a balanced distribution of reports. 

3. RELATED WORK 

3.1 Triaging Bug Reports 
 
There have been various studies related to bug assignment or triaging. These studies 

initially focused on finding suitable developers by using triaging histories on who had 
handled what bug reports in the past. 

Cubranic and Murphy proposed a semi-automatic bug triaging method [4] inspired 
by Fischer’s research to extract the software features from code history and a set of bug 
reports [12]. They transformed textual summaries and descriptions into computable fea-
ture-vectors based on TF-IDF. The vectors being mapped to the bug assignees were then 
classified by using the naïve Bayesian technique. The experimental results showed 30% 
accuracy in triaging the bug reports of the Eclipse project. 

Anvik et al. proposed a novel technique [5] using the support vector machine algo-
rithm to improve the previous semi-automatic triaging [4]. They used a heuristic approach 
to build a word-vector from bugs and labeled them with related developers. The precisions 
of the algorithm applied to Eclipse and Firefox were 57% and 64%, respectively, which 
were 4~20% higher than in previous cases. 

On the other hand, Matter et al. focused on extracting developer expertise from 
source codes to enhance the bug triaging process [13]. To represent developer expertise, 
they created a term-author matrix by extracting bag of words from all source code histo-
ries. The temporal decay was also considered by diminishing the weight of expertise as 
time passed since the code had been changed. When they have a new bug report, they 
build a term-vector of the bug report and compare it with the term-author matrix. Their 
approach showed 33.6% top-1 precision and 71% top-10 recall. 

Bhattacharya extended Jeong’s tossing graph [3] to exclude inactive developers by 
considering the period of their activeness [14]. Comparison experiments with various 
machine learning algorithms were conducted to find the best solution to bug assignment, 
naïve Bayes showed 86% accuracy. 

Shokripour et al. proposed a two-phased location-based triaging method [1] to re-
solve this problem. They built a weighted noun-index using simple terms in order to pre-
dict the location of each bug and assign a proper developer. Their method showed 89% 
and 59% precisions for JDT and Firefox, respectively, a 70% improvement over the pre-
vious approach [15].  

However, most of them focused on the issue of finding a suitable developer for a 

More than 60% of bug reports are assigned to 10% of developers on aver-
age while they spend 1.4 times longer time to resolve the reports than other 
developers. 
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specific bug, not considering the overall cost of tackling the bug reports or a balanced 
distribution from the assigner’s perspective. As a result, it is difficult to provide a fully 
automated solution to those problems. 

 
3.2 Cost Estimation of Handling Bug Reports 

 
There have been several studies on estimating the cost of handling bug reports. 

Weiss et al. estimated the modification time of a newly given bug by using the average 
time previously to have similar bugs fixed [9]. Their approach showed 30% precision for 
the JBoss data. However, the method was only applicable for systems capable of record-
ing the effort history. 

Park et al. proposed a solution to this issue by considering the developer’s bug-fix- 
ing cost [8]. The purpose of their work was to minimize the fixing cost and maximize the 
triaging precision at the same time. Their approach showed that a 10% decrease of the 
precision could cut the total fixing cost in half for open source projects such as Apache, 
Eclipse, Linux Kernel, and Mozilla. Their research showed the importance of a cost- 
balanced distribution of bugs in triaging. However, the time gap between bug-assigned 
time and bug-resolved time was considered as the fixing cost for a bug. 

Xiao and Afzal also utilized the estimated effort to fix bugs to tackle bug reports 
with GA-based scheduling in the software testing phase [16]. They also defined models 
for the bug report and for the developer with fundamental information such as required 
skill, competency, experience, and workload. However, this required manual evaluations 
for all data in order to predict the fixing cost of each bug. 

In most approaches, the time difference between the time of a bug being assigned 
and it being fixed was considered as the cost of the bug. For these approaches, however, 
It is necessary to acquire the fixing history of similar bugs, and it is difficult to estimate 
the cost of bug reports with short-term history. From this point of view, our approach 
uses the size, difficulty, and similarity of the documents to predict the cost of bugs. 

 
3.3 Grouping Similar/Duplicate Bug Reports 

 
Several studies have been conducted to detect bug reports describing the same pro- 

blem, not only because duplicate bugs can compensate for insufficient information but 
also because they can confuse developers and lead to inefficiency [17]. Runeson et al. 
studied the detection of duplicate bug reports based on natural language processing for 
the first time [18]. They extracted summaries and descriptions from open source projects, 
and then generated a feature-vector based on TF-IDF. The cosine similarity algorithm 
was used to compare the similarity between each pair of bugs and a time frame was given 
to reduce the number of bugs to be compared. By investigating the top 5 high similarity 
bugs, they found 30% duplicate bugs Sony Ericsson’s project. 

Wang et al. extended Runeson’s method [18] and improved the accuracy of the du-
plicate bug detection algorithm by using execution information as well as natural lan-
guage data [19]. In particular, the execution information was a better source for detecting 
similar internal behaviors of defects than a text-based description, which was limited in 
terms of representing their external behaviors. Wang’s approach showed better accuracy 
than Runeson’s for the Eclipse and Firefox projects. 
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Sun et al. used an SVM-based machine learning algorithm to train a model using 
duplicate and non-duplicate pairs of bugs extracted from a repository [20]. Their experi-
ment to recommend the top 5 duplicated bugs showed 50% recall for the Eclipse, Firefox, 
and OpenOffice projects. However, no obvious improvement was found in the case of 
excluding manually tagged information. 

Nguyen et al. used the Latent Dirichlet Allocation as well as a text-based retrieval 
technique to detect duplicate bugs expressed in different terms [21]. They defined a topic 
model based on LDA, and combined it with BM25 to resolve the issue. The results of 
recall applying DBTM to the Eclipse project were 57%, 76%, and 82% for the top-1, 
top-5, and top-10 recommendations, respectively. These results were 20% higher than 
previous methods [22]. Somasundaram and Murphy used the Latent Dirichlet Allocation 
with Kullback-Leibler divergence to correctly assign bug reports that had been catego-
rized into the wrong components [23]. Zhang and Lee grouped bug reports that had been 
included in the same component. They then compared the bug reports located in the same 
group to detect duplicate bugs [24]. 

Several approaches applied machine learning techniques based on similarity metrics 
to find duplicate bugs. In order to apply the machine learning techniques to duplicate 
bugs, the number of clusters or training sets should be provided. To address these con-
straints, we adopted threshold values for the similarity metric to group them into undi-
vided SRGs. We also considered fuzzy inference that is utilized for document clustering 
[25], temperature prediction [26], and forecasting enrollments [27] to detect duplicate 
bugs. However, we chose a simple similarity algorithm based on TF-IDF because of their 
complexity.     

 
3.4 Optimization Algorithms 

 
There are many approaches to find optimal solutions such as Simulated Annealing 

[28], Ant Colony Optimization [29], Genetic Algorithm [30, 31], and fuzzy-related algo-
rithms [32-35]. Since finding a solution from optimization problem is too complex to 
compute all the possible cases, these algorithms are used to obtain the near-optimal solu-
tion instead of the real-optimal solution. 

Simulated Annealing [29] is a global search algorithm that mimics the physical an-
nealing of solids. It starts from a random position and moves toward the optimal solution 
progressively. Jumping to a far distance from a current optimal solution with a small 
probability is used to prevent the algorithm from falling into local optimization. 

Ant Colony Optimization [30] is a global search algorithm that mimics the way how 
ants find food. The initial goal was to find the optimal path in a graph. The algorithm 
moves randomly to the direction of a target node. When it reaches the target node, it 
moves back to the start node with the pheromone. After the several iterations, the best 
pheromone intensity path will be selected to determine the optimal solution. This ap-
proach is used as a global search algorithm in various fields such as routing [36] and 
scheduling [37]. 

Genetic Algorithm [31] is one of the evolutionary algorithms that is inspired by the 
process of natural selection. It creates a population that is an initial set of solutions and 
evolves the population through operators such as crossover, mutation, and selection itera-
tively. This process provides an effective way to find globally optimal solutions by keep- 
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ing wide-range of candidates in a set of solutions. To apply the Genetic Algorithm, it is 
not only necessary to be able to convert a solution of the problem into a chromosome but 
we also need to define a fitness function to evaluate the solution.  

4. COST-AWARE BUG REPORT CLUSTERING 

This section defines a balanced clustering problem of bug reports with respect to the 
cost of the bugs. As described in section 2, the overall defect resolution can be delayed if 
bug reports are assigned to developers in an imbalanced manner. It is thus necessary to 
efficiently distribute bug reports to developers so that they can spend similar amounts of 
time in resolving bugs. 

In this paper, it is assumed that a balanced bug distribution is necessary from the 
perspective of production managers. If a few developers take too many bugs, vulnerabil-
ity to production delay is greatly increased. Thus, bug triagers should focus on balancing 
the cost of bugs assigned to each developer. A balanced distribution can have a higher 
priority than expertise matching. Otherwise, there will be increased vulnerability to de-
layed project releases. 

Our goal is to distribute bug reports to each developer in a balanced way based on 
the assumption described above. To formally define this problem, it is necessary to clar-
ify several concepts in the bug assignment process. For a given n number of bug reports 
and m number of developers, which should be the same as the number of clusters to be 
generated, let B = {b1, b2, …, bn} be a set of the bug reports. Bug assignment can be de-
termined by the n-dimensional vector: 

a = a1, a2, …, an (1) 

where ai is an index of a cluster to which a bug report bi belongs (1 ≤ i ≤ n, 1 ≤ ai ≤ m). 
Then, a cluster with an index j, which is actually a set of bug reports, can be defined as 
ca,j (1 ≤ j ≤ m) for an assignment a. 

Let Ca = {ca,1, ca,2, …, ca,m} be a set of clusters made by an assignment aA, where 
A is a universal set of assignments. Each bug reports are assigned to clusters. Later, each 
cluster will be assigned to a certain developer for a balanced report distribution. 

For a certain assignment a, it is necessary to compute the total cost of assigned bug 
reports for each cluster. Let CostB be a function defined to compute the cost of bug re-
ports as follows: 

CostB: B  R. (2) 

Based on CostB, the total cost of bug reports in cluster ca,j for a certain assignment a 
can be defined as: 

,

,( ) ( ).
j

C j B
b c

Cost c Cost b


 
a

a  (3) 

The cost of a set of bug reports is not just the sum of each bug report’s costs because 
of their similarity and dependency. The details related to this issue are described in sec-
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reading cost rather than achieving better report assignment, we focused on textual infor-
mation. 

The remainder of this section describes the tasks of CBAC in detail. 
 

5.2 Bug Report Reading Cost 
 
To compute the cost of a given bug report, CBAC uses the document reading cost. 

This cost represents the effort to understand a specific document. Since bug reports are 
documents written in natural languages, reading and understanding bug reports take a 
significant amount of debugging effort. Thus, reading cost can be an effective indicator 
for measuring the cost of a bug report. 

Our approach uses three metrics to calculate the reading cost of a bug reports: (1) 
word difficulty; (2) sentence complexity; and (3) document length. First, difficult or un-
familiar words can increase the cost of document reading since a document reader may 
need to search in a dictionary or on the web for the concept of the words. Complex sen-
tences can make a reader take more time to understand the document. In addition, the 
size of a document (e.g., the number of words or sentences) may inherently increase the 
effort needed to read and understand it. 

To compute the word difficulty and sentence complexity, this approach uses the 
Flesch-Kincaid equation [10]. This equation improves Flesch Reading Ease [38]. The 
United States Department of Defense uses this equation to evaluate its documents [39]. 
As shown in Eq. (5), the Flesch-Kincaid equation measures the reading cost of a docu-
ment b (i.e., a bug report in this approach) by using the following two terms: (1) the av-
erage number of syllables in words to compute word difficulty and (2) the average num-
ber of words in sentences to compute sentence complexity. 

_ ( ) _ ( )
_ ( ) _ ( )( ) 0.39( ) 11.8( ) 15.59word count b syllable count b

sentence count b word count bFK b     (5) 

CBAC defines the reading cost for a document b as CostB(b) based on the Flesch- 
Kincaid equation and document size (the number of words) as shown in Eq. (6). CostB(b) 
is a product of the Flesch-Kincaid value and the number of words in a document b. We 
set the coefficient of the first term to 10−1 since 10 is the minimum level of readability for 
ordinary documents based on the US government requirements [40]. As FK(b) yields [0, 
20], it is normalized into [1, 3]. Similarly, the approach normalizes the second term (i.e., 
document size) by 100 so that it will not dominate the first term. 

( ) _ ( )
10 100( ) ( 1)( )B

FK b word count bCost b    (6) 

5.3 Grouping Bug Reports 
 
CBAC groups similar bug reports together before clustering the reports. Reading 

similar documents can reduce reading cost; after reading a bug report, the reading cost of 
another similar report can be lower than the cost of understanding the report indepen- 
dently. Thus, it is necessary to put similar bug reports into a group. 
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5.3.1 Bug report similarity 
 
To compute the similarity of a pair of bug reports, CBAC leverages the Vector 

Space Model (VSM) [41]. This approach transforms text in a bug report (title and de-
scription) into a vector. The vector consists of TF-IDF (term frequency-inverse document 
frequency) [42] values of each word in the bug report; this is computed by Eq. (7). Let t 
be a term used in report b. tf(t, b) is the scaled frequency of the raw term frequency f(t, b). 
B is a set of bug reports and N(t, B) is the number of documents in which the term t ap-
pears. idf(t, B) is the inverse document frequency of the term t in B. tfidf(t, b, B) is the 
TF-IDF value of the term t in the report bB. 

| |

( , ) 1 log ( , )

( , ) 1 log

( , , ) ( , ) ( , )
t

B
N

tf t b f t b

idf t B

tfidf t b B tf t b idf t B

 

 

 

 (7) 

Cosine similarity is used to compute the similarity between reports. CBAC performs 
a pair-wise comparison between all bug reports to determine similar report groups 
(SRGs). Eq. (8) shows the similarity equation used in our approach: 

1 2

1 21 2 | || |( , ) V V
V VSim V V   (8) 

where V* is a term vector (its elements are computed using Eq. (7)) of bug reports. 
CBAC uses the similarity values to identify SRGs. The approach defines a threshold 

value when identifying report groups. Once a subset of bug reports is classified into an 
SRG, it is dealt with by single developers so that the reading cost will be reduced. 

To determine an appropriate threshold value, we conducted a preliminary user study. 
In this study, we asked five developers whether a specific threshold is effective to iden-
tify SRGs. For this study, we collected 1,047 bug reports of Mozilla Firefox submitted 
from July 1, 2013 to July 30, 2013. We then computed the pair-wise similarity of the 
reports. Among these reports, we selected 41 pairs of similar bug reports in which their 
similarity values were higher than 0.5. 

We provided the pairs to the five developers and asked them to evaluate the effec-
tiveness of each pair with respect to reducing reading cost. The effectiveness was evalu-
ated by the five-level Likert scale as shown in Table 2. 

Table 2. Likert scores to determine appropriate threshold. 
Likert Score Description 

5 
4 
3 
2 
1 

Very Helpful 
Helpful 
Normal 

Rarely Helpful 
Never Helpful 

 

Fig. 5 shows the results of the similarity evaluation. The X-axis represents threshold 
values (for each 0.01 unit) and the Y-axis is the ratio of each answer shown in Table 2. 
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Algorithm 1: Algorithm for cost-aware balanced clustering of bug reports 

Input: R: a set of bug reports 
Input: D: the number of developers (i.e., the number of clusters) 
Output: solution: best-so-far chromosome (i.e., clusters) 
Param: population_size: the size of population 
Param: generation_max: the maximum number of generations 
Param: rc: crossover rate 
Param: rm: mutation rate 

1 P  initial_population (population_size, R, D); 
2 children_size  population_size  rc; //The number of solutions will be created in a  

generation. 
3 for generation  1 to generation_max do 
4  Pchildren  {};          //Solutions which is created in this generation 
5  Pdeprecated  {};        //Solutions which will be removed in this generation 
6  for cnt  1 to children_size do 
7   p1, p2  selection(P) offspring  crossover(p1, p2) 
8   if random() < rm then 
9     //mutation will be applied as rm probability. 

10     offspring  mutation(offspring) 
11   end 
12   Pchildren  Pchildren  offspring 
13   deprecated  min_fitness(p1, p2); 
14   Pdeprecated  Pdeprecated  deprecated; 
15  end 
16  Preplace(P, Pchildren, Pdeprecated); 
17  rmrm  rdm; 
18 end 
19 solution  best_individual(P); 
20 return solution 
 

5.4.1 Representation 
 

Fig. 7 shows the chromosome and the clusters used in our approach. The chromo-
some can represent one possible assignment of SRGs to clusters, which is actually an 
assignment of bug reports to clusters, as described in Eq. (1) of section 4.1. The position 
and digit of a gene indicate the indexes of an SRG and the cluster to which the SRG is 
assigned, respectively. Thus, the bug reports in an SRG are always assigned to an identi-
cal cluster. 

For example, the chromosome in Fig. 7 (a) indicates that the five SRGs are assigned 
to clusters 2, 1, 2, 4 and 3. Fig. 7 (b) is a graphical representation of clusters based on the 
chromosome shown in Fig. 7 (a). Note that reports in a single SRG are assigned to a sin-
gle cluster. 
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Table 3. Five questions and answers for user study. 
Q1: Who does distribute bug reports? 
Distributor (70%) Developer (13%) Other(17%) 
Q2: How to identify similar bug reports? 
Manual identification by distributors (63%) 
Manual identification by developers (13%) 
Systematic identification (20%) 
Other (3%) 
Q3: Are bug reports uniformly distributed in the current practice? 
Strongly agree (10%) Agree (23%) 
Neither agree nor disagree (53%) 
Disagree (10%) Strongly disagree (3%) 
Q4: What are the criteria of uniform report distribution? 
Similar number of reports (3%) Similar reading cost (27%) 
Similar bug fixing time (40%) Other (30%) 
Q5: Is CBAC useful for bug report distribution? 
Strongly agree (10%) Agree (57%) 
Neither agree nor disagree (20%) 
Disagree (13%) Strongly disagree (0%) 

 

We then asked them about our approach. First, 67% of the participants stated that 
the results of CBAC were helpful for obtaining a balanced report distribution. Negative 
responses accounted for only 13%. In addition, the participants provided several sugges-
tions: addressing bug-fixing cost [9] and considering developer expertise and authorship 
[16, 47]. 

 
 
  

 

6.3 Threats to Validity 

 Construct validity: The reading cost of bug reports may not be strongly correlated 
with bug-fixing time in practice. However, contemporary estimation techniques [7, 8, 
11] for bug-fixing effort highly depend on imprecise bug-fixing data because develop-
ers often do not accurately record their effort and time in resolving bugs. Document 
reading cost can provide at least a guide for determining estimated effort to understand 
bugs, and this is one of the major tasks in bug resolution. 

 Internal validity: Our equation for reading cost estimation (Eq. 6) might not precisely 
represent the actual complexity of a document. Since bug reports have different char-
acteristics compared to other types of documents such as technical manuals and legal 
statements, general-purpose methods for computing reading cost might not work. 

 External validity: Our approach might show different performance depending on sub-
jects or closed-source projects. Since our evaluation was performed only on Mozilla’s 
Firefox project, applying CBAC to other projects may yield different results. 

7. CONCLUSION 

We presented an approach and tools aimed at distributing bug reports to developers 

Developers stated that our approach can contribute to balanced report dis-
tribution. 
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in a cost-effective manner, by considering their costs to provide workload balancing. 
First, we extracted bug reports from open source projects. Similar report groups that can 
be efficiently tackled by the same developer were then generated based on their similari-
ty and dependency. Next, GA-based experiments to find a near-optimal set of clusters 
were conducted to provide a balanced distribution of bug reports. The standard deviation 
of the cluster costs was used as a fitness function in the optimization process. 

The analyzed data from open source projects revealed that a large number of bug 
reports are concentrated on a small group of specific developers. However, overall 
bug-fixing time can be delayed if bug reports are distributed to developers in an imbal-
anced manner. 

We also evaluated our approach by carrying out a survey targeting 30 developers from 
15 companies. The results showed that 67% of the participants found our method helpful 
for triaging bugs to developers. The proposed approach, because it does not utilize the 
fixing history, can also provide balanced opportunity to both existing and new developers. 

When a developer is organizing a development team, our approach can be effec-
tively applied to assign a massive number of bugs to be fixed in a given limited time. 
From that point of view, our approach is also related to the optimized scheduling problem. 

In summary of our contribution, we suggested a novel cost metric to comprehend a 
set of bugs by considering similarity and dependency of the bug reports. The bugs can be 
assigned to each developer in a balanced manner based on the metric. Thus, our approach 
can be effectively used in the development process, from the manager’s perspective.  
Moreover, we used Kinciad’s document readability [10] to calculate the reading cost of 
bug reports. This can be replaced with any other measure in the future because our 
method can be applied independently of the metric. And using our approach, the struc-
ture of the development team can also be generated from a set of bug reports, by recur-
sively applying our method with a modified threshold or by using relations between the 
bugs to find larger clusters. 

Recently, in the field of Granular Computing [48, 49], many researchers have been 
proposing new granular algorithms such as clustering [50, 51], classification [52, 53], 
rule-based algorithm [54, 55], and other various approaches [56-58]. In the future, we 
will improve the way to find optimal solutions by applying those algorithms. 
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