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Abstract—Fault localization produces bug positions as the basic
input for many automated program repair (APR) systems. Given
that test cases are the common means that automatic fault
localization techniques leverage, we investigate the impact of their
characteristics (in terms of quality and quantity) on APR. In
particular, we analyze the statements that appear in crash stack
traces when test cases fail (note that stack traces are available
when an ordinary test case fails since its verdict is often made
by assertions that produce errors such as AssertError in Java
and JUnit), and explore the possibility of using some relevant
crash information to enhance fault localization; this ultimately
improves the effectiveness of APR tools. Our study reveals that
the considered state-of-the-art APR systems achieve the best
performance when fixing bugs associated with boolean type
expected values (e.g., assertTrue() or assertFalse()). In
contrast, they achieve their worst performance when address-
ing bugs related to null check assertions. Meanwhile, null
check bugs as well as the bugs associated with boolean and
string type expected values are still the main challenge that
should be addressed by the future APR. For exception throwing
bugs, existing APR systems present the best performance on
fixing NullPointerException bugs, while the tough task of
them is to resolve the bugs throwing developer-defined exceptions.
The information in stack traces after executing the bug-triggering
test cases can be used to effectively improve the performance on
fault localization and program repair.

Index Terms—Automated program repair, test case, fault
localization.

I. INTRODUCTION

With increases in scale and complexity, the software is prone
to defects. Such defects, however, can incur huge losses [1],
[2], [3]. To identify software defects, developers often rely on
software testing campaigns, where each software functionality
is executed to ¶ assess that the software behavior matches
expected requirements and · ensure that the software is
defect-free [4]. In general, developers specify some inputs and
their corresponding expected outputs as test cases, which will
form the test suites be executed in a testing campaign. When
software is adequately tested, it provides more guarantees for
reliability, security, and high performance [4].

∗Kui Liu and Zhe Liu are the corresponding authors.

Unfortunately, while testing is now largely automated for
identifying defects, fixing programs remains challenging as it
resource-intensive w.r.t.time and manual effort [5]. Therefore,
the promise of automated program repair (APR) to alleviate
the manual burden is appealing [6]. APR has thus been a
prolific research field in the last decade [7], [8], [9]. Among
the various approaches that are proposed, many fall under
the category of generate-and-validate APR [10], [11], [12],
[13], [14], [15], [16], [17] where program faults are localized
to drive patch generation before patch validation. Figure 1
presents the common steps of APR, in which fault localization
tries to spot the faulty statements that should be changed
by APR tools [18]. In most APR tools, fault localization is
implemented with spectrum-based techniques that highly rely
on test case execution coverage [19].

Test cases are important for APR. In the patch generation
process, they have been largely explored to improve repair
performance. For example, ACS [20] leverages the expected
return values of the failed tests as constraints to synthesize
patches. Xin and Reiss [21] also explored statements appearing
in crash stack traces for improving program repair. Patch val-
idation further relies on the regression tests to check whether
the patch can make the patched buggy program pass all tests
or not. Test cases have been further exploited to validate
the correctness of APR-generated patches by investigating the
behavior similarity of test case executions [22].

Spectrum-based fault localization leverages the execution
traces of passing and failing tests to estimate the suspicious-
ness of each statement with a specific ranking formula [23]
(e.g., Ochiai [24]). When a statement is executed by more
failing tests and fewer passing tests, it is suspected to be
faulty [25]. If the faulty statement can be spotted by the fault
localization technique with a higher suspiciousness than other
statements, APR tools can be more effective in addressing
the fault. Recently, there have been studies investigating the
impacts of fault localization on APR performance, but they
have a limited scope. For example, Liu et al. [18] have recently
demonstrated how localization failures hinder the performance
of APR. Their empirical study, however, does not provide

35

2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)

Work licensed under Creative Commons Attribution NonCommercial, No Derivatives 4.0 License. https://creativecommons.org/licenses/by-nc-nd/4.0/
DOI 10.1109/ICSME52107.2021.00010



Fault Localization Patch Generation Patch Validation

Test Suite

Buggy Program

Test Suite

Fig. 1. Overview of APR process.

insights into the test cases that are leveraged to perform
fault localization, nor does it attempt to enhance the fault
localization results towards improving program repair.

This paper. Our work aims to revisit test cases (and their
execution output) to improve generate-and-validate program
repair through enhancing fault localization. After investigating
the relationship between the fault localization performance and
the bug-fixing performance of state-of-the-art APR systems,
we provide a characterization (both qualitative and quantita-
tive) of test cases with respect to fault localization. We then
propose to leverage information on statements listed in crash
stack traces to improve localization results and eventually
boost the APR performance.

We make the following findings in our study:

1) APR tools in the literature are still challenged to repair
bugs that cannot be precisely localized by spectrum-based
fault localization.

2) From a quantitative perspective, the number of failing test
cases does not seem to affect the performance of APR.

3) From a qualitative perspective, test case characteristics
correlate with the performance of APR: the state-of-the-
art APR presents the best performance on fixing bugs
associated with expected output values of boolean,
but achieves the worst performance on fixing non-null
asserting bugs. Meanwhile, non-null asserting bugs, as
well as the bugs associated with boolean and string
type expected values are still the main challenge that
should be addressed by the future APR.

4) Among exception-related bugs, existing APR systems
presented the best performance on fixing NullPointer
Exception bugs. Resolving developer-defined excep-
tions remains however the most challenging.

5) The information in stack traces produced by bug-
triggering test cases1 can be used to effectively improve
the performance of fault localization (and eventually of
program repair). Furthermore, the information in stack
traces can be leveraged to guide the selection of fix
patterns towards producing more correct patches.

1Note that, when using JUnit, stack traces are available for any ordinary
failing test case as developers often check test verdict by using assertions
(e.g., assertTrue()), which produce errors with stack traces if the test
condition is not satisfied.

II. BACKGROUND

A. SBFL — Spectrum-Based Fault Localization

SBFL is a fault localization technique widely used in the
APR community [26], [27], [28], [29], [30]. This technique
takes as input a buggy program and its passing test cases as
well as its failing test cases, and applies a ranking formula to
the execution traces of all test cases to localize buggy code at
the statement level by calculating the suspiciousness of each
statement [23], [25]. In the APR literature [31], [32], [33],
[34], [35], [36], [37], Ochiai [24] is the widely-used ranking
formula of SBFL, which calculates the suspiciousness Sochiai

for a program statement s with the formula presented as below:

Sochiai(s) =
sf√

(sf + sp) ∗ (sf + s′f )
(1)

where sf and sp respectively denote the number of failing
and passing test cases that executed the statement s, while s′f
is the number of failing test cases that did not execute the
statement s. It shows that the precision of locating the faulty
statement is relevant to the number of failing and passing test
cases. To precisely rank the faulty statement to the top location
that will be preferentially resolved by APR systems to generate
patches, the buggy program should have more failing test cases
to execute the faulty statement than other statements. If the
faulty statement is not prioritized to the top, APR systems
will have a large space of patch candidates for fixing bugs,
as they will conduct lots of attempts on suspicious but non-
faulty statements before the faulty one. If the faulty statement
cannot be detected, all of the patch candidates generated by
APR systems for non-faulty statements are useless.

B. Generate-and-Validate Automated Program Repair

Generate-and-validate automated program repair (APR)
aims to shift the burden of manual debugging by automatically
generate patches for fixing faults located in programs [7]. As
illustrated in Figure 1, the APR system starts with a set of test
cases, at least one of them will help to expose the defect of the
buggy program in the fault localization step. In the next step,
the APR system applies adequate modifications to the buggy
program to generate patch candidates for the bug. As the final
step, patch validation is dedicated to validating generated patch
candidates to check whether it can make the patched program
pass all tests or not. If the patched program passes all tests,
the patch candidate is considered as a plausible patch for the
buggy program, which produces correct outputs for all inputs
in the test suite of the buggy program [33]. The plausible
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patch could just overfit the test suite [33], but does not fix the
bug as correctly as developers expected. To address this issue,
practitioners have been exploring to validate the correctness
of APR-generated patches [38], [39], [40], [41], [42]. For
example, Xiong et al. [22] analyzed the behavior similarity
of test case executions to determine patch correctness.

III. STUDY DESIGN

This section first overviews the research questions that we
investigate in this work. Then, we present the experimental
setup to answer these research questions.

A. Research Questions

• RQ1: Do the state-of-the-art APR systems only focus on
addressing the bugs that are easily detected by fault local-
ization techniques? Spectrum-based fault localization frame-
works (e.g., GZoltar [19]) provide a ranked list of suspicious
statements. Our research question aims at investigating
whether state-of-the-art APR systems are prone to correctly
fix such bugs that current localization techniques can readily
localize (i.e., they rank buggy statements in top positions).

• RQ2: Do the characteristics of test cases impact the bug-
fixing performance of state-of-the-art APR systems? Test
cases play an important role in the process of fault lo-
calization as well as patch validation, and can be used in
patch generation since test cases can be used to categorize
bugs [9]. In previous studies, a few APR systems have been
proposed for addressing the specific types of bugs (e.g.,
NPEFix [43] and VFix [44] for null pointer dereferences).
Our research question checks out whether the state-of-the-art
APR systems focus on specific types of bugs or intentionally
address common bugs.

• RQ3: To what extent stack trace information (when test
cases lead to program failures) can be leveraged to improve
the bug-fixing effectiveness of APR systems? The failing
execution of some test cases can lead to crashes2 with
exceptions being thrown, where crashed statements will be
enumerated in the corresponding stack trace. When devel-
opers fix such bugs manually, they will firstly attempt those
crashed statements before others. Therefore, we explore
the possibility of improving the bug-fixing performance of
APR systems with the stack trace information from failed
executions of test cases.

B. Experimental Setup

In this study, we focus on the APR systems targeting
Java program bugs. To answer the aforementioned research
questions, we select the benchmark Defects4J [45] as it
contains test cases for buggy Java programs with the associated
developer patches. Table I presents statistics on the number of
bugs and test cases available in version 1.5.03 of Defects4J that
we use in this paper, since this version has been widely used
by state-of-the-art APR systems targeting Java programs [46].

2When using JUnit, normal failing test cases always result in crashes since
JUnit’s assertions produce Exceptions if its condition is not satisfied.

3https://github.com/rjust/defects4j/releases/tag/v1.5.0

TABLE I
DEFECTS4J-V1.5.0 DATASET INFORMATION.

Project Bugs kLoC Tests
JFreeChart (Chart) 26 96 2,205
Closure compiler (Closure) 131 90 7,927
Apache commons-lang (Lang) 64 22 2,245
Apache commons-math (Math) 106 85 3,602
Mockito 38 11 1,457
Joda-Time (Time) 26 28 4,130
Total 391 332 21,566
∗All information is excerpted from the Defects4J paper [45] and [51]. Four
deprecated bugs5(i.e., Closure-63, Closure-93, Lang-2 and Time-21) are not
considered in this study.

TABLE II
APR TOOLS FOR JAVA BUGS STUDIED IN THIS WORK.

jGenProg [27], jKali [27], jMutRepair [27], HDRepair [32],
Nopol [28], ACS [20], ssFix [21], ELIXIR [36], JAID [35], Sim-
Fix [26], CapGen [30], SketchFix [29], LSRepair [37], SOFix [52],
ARJA [53], 3sFix [54], kPAR [18], AVATAR [49], TBar [48],
PraPR [55], VFix [44], Hercules [50], FixMiner [17], ConFix [56],
GenPat [57], DLFix [58].

For fault localization, we consider GZoltar4 with Ochiai to
expose bug positions in Defects4J. GZoltar [19] is an on-hand
test automation framework for automatic debugging, and has
been widely used in the APR community [20], [47], [48], [49]
as well. And the majority of the APR systems [30], [36], [50],
[29] considered Ochiai as the ranking formula to prioritize the
suspicious statements.

To answer RQ1 and RQ2, we collect patches for Defects4J
bugs that are generated by 26 state-of-the-art APR tools
shown in Table II. The patches generated with the assumption
of perfect fault localization are not considered, as the fault
localization process is not actually included in the pipeline of
generating such patches [49], [48], [16]. The collected patches
are identified as correct or incorrect, where correct patches
denote that the APR-generated patches are syntactically/se-
mantically similar to developer-provided patches, while the
incorrect patches are the plausible patches that overfit the test
cases of buggy programs but do not actually fix the bugs. In
this work, we follow the criteria provided by Liu et al. [46]
to identify the correctness of APR-generated patches.

IV. STUDY RESULTS

This section provides experiment results as well as the
key findings of the corresponding research questions that are
investigated in this work.

A. RQ1: Quantitative Bug-Fixing Performance with Fault Lo-
calization and Failing Tests

To answer this question, we first review the APR tools listed
in Table II and collect the bugs that are correctly/plausibly
fixed by them (shown in Table III). The correctness and
plausibility of fixed bugs are directly excerpted from the
reported results of the related research work presented in [18].
Among the 391 bugs in the Defects4J benchmark, ¶ 214

4https://github.com/GZoltar/gzoltar
5https://github.com/rjust/defects4j
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--- a/source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer.java
+++ b/source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer.java
@@ -1794,7 +1794,7 @@ public abstract class AbstractCategoryItemRenderer extends AbstractRenderer

}
int index = this.plot.getIndexOf(this);
CategoryDataset dataset = this.plot.getDataset(index);

- if (dataset != null) {
+ if (dataset == null) {

return result;
}
int seriesCount = dataset.getRowCount();

Fig. 2. Patch diff for fixing bug Chart-1.

bugs are not fixed by any APR tools (unfixed bugs), · 53
bugs are fixed by at least one APR tool with plausible but
incorrect patches only (plausibly fixed bugs, denoted as p-
fixed bugs), ¸ 78 bugs are fixed with correct patches by some
APR tools and plausible but incorrect patches by other APR
tools (plausibly or correctly fixed bugs, denoted as p&c-fixed
bugs), and ¹ 46 bugs are fixed with patches that were all
correct (correctly fixed bugs, denoted as c-fixed bugs): none
of the tools generated a plausible but incorrect patch for them.

TABLE III
STATISTICS ON FIXED/UNFIXED DEFECTS4J BUGS.

Category # bugs # bugs′
unfixed bugs 214 245
only plausibly-fixed bugs 53 41
plausibly/correctly-fixed bugs 78 42
only correctly-fixed bugs 46 63
∗“# bugs′” denotes the bugs that are fixed by the APR systems,
studied after the investigation by Liu et al. [18] in which the impact
of fault localization on program repair has been explored.

As reported by Liu et al. [18], the fault localization perfor-
mance can impact the bug-fixing performance of APR tools,
which are prone to fix the subset of Defects4J bugs that can be
accurately localized. We further investigate whether the bug-
fixing performance of new proposed APR tools has been im-
proved after Liu et al.’s finding is reported. To that end, we first
leverage GZoltar + Ochiai to expose the bug positions related
to Defects4J bugs within a ranked list of suspicious statements.
We note that the majority of the ranked suspicious statements
are actually not faulty. Concretely, we define the index of the
actual faulty statement spotted in the ranked list of suspicious
statements as the spotted bug location. For example, the bug
Chart-1 shown in Figure 2 is located at line 1,797 in the class
org/jfree/chart/renderer/category/Abstract
CategoryItemRenderer.java. Its spotted bug location
is 28 (highlighted in red) exposed by GZoltar + Ochiai, as
shown in Figure 3.

Figure 4 illustrates the distribution of spotted bug locations
concerning the bug-fixing results of the state-of-the-art APR
tools. We observe that for all state-of-the-art APR tools listed
in Table II, the unfixed bugs and the plausibly but incorrectly
fixed bugs have lower spotted bug locations (i.e., bigger
values) than the correctly fixed ones. When only considering
the APR tools proposed after Liu et al.’s “fault localization
bias” work [18], the spotted bug locations of fixed and unfixed
bugs have a similar distribution with all APR tools. This
indicates that the newly proposed state-of-the-art APR tools

01: org.jfree.chart.renderer.category.AbstractCategoryItem
Renderer@1793

02: org.jfree.chart.plot.CategoryPlot@1614
03: org.jfree.chart.plot.CategoryPlot@1613
04: org.jfree.chart.plot.CategoryPlot@1684
05: org.jfree.chart.plot.CategoryPlot@1682
06: org.jfree.chart.plot.CategoryPlot@1681
07: org.jfree.chart.plot.CategoryPlot@1679
08: org.jfree.chart.plot.CategoryPlot@1678
09: org.jfree.chart.plot.CategoryPlot@1675
10: org.jfree.chart.plot.CategoryPlot@1674
11: org.jfree.chart.plot.CategoryPlot@1673
12: org.jfree.chart.plot.CategoryPlot@1672
13: org.jfree.chart.plot.CategoryPlot@1667
14: org.jfree.chart.plot.CategoryPlot@1665
15: org.jfree.chart.plot.CategoryPlot@1340
16: org.jfree.chart.plot.CategoryPlot@1339
17: org.jfree.chart.plot.CategoryPlot@1358
18: org.jfree.chart.plot.CategoryPlot@1367
19: org.jfree.chart.plot.CategoryPlot@1365
20: org.jfree.chart.plot.CategoryPlot@1362
21: org.jfree.chart.plot.CategoryPlot@1357
22: org.jfree.chart.plot.CategoryPlot@1356
23: org.jfree.chart.plot.CategoryPlot@1353
24: org.jfree.chart.plot.CategoryPlot@1352
25: org.jfree.chart.plot.CategoryPlot@1046
26: org.jfree.chart.plot.CategoryPlot@1045
27: org.jfree.chart.renderer.category.AbstractCategoryItem

Renderer@1798
28: org.jfree.chart.renderer.category.AbstractCategoryItem

Renderer@1797

Fig. 3. Ranked list of suspicious statements for exposing bug Chart-1.

c−fixed bugs

p&c−fixed bugs

p−fixed bugs

unfixed bugs

0 100 200 300
Ranked Bug Position

Tools
APR Tools after Liu et al.'s work [18]
All APR tools listed in Table II

Fig. 4. Distribution of spotted bug locations for fixed/unfixed bugs (the
smaller the better).

still face the challenge on effectively resolving the bugs
which cannot be precisely localized. To address this challenge,
two ways could be explored:

1) Improving the fault localization performance for APR.
APR tools make trials on modifying the suspicious
statements reported by fault localization techniques. The
straightforward way is to improve the precision of locating
bug positions by ranking high the faulty statements.

2) Improving the patch validation for APR. Many bugs
are fixed with plausible but incorrect patches that are
generated by modifying the non-faulty statements, which
are, unfortunately, ranked before the faulty statement. Thus,
to boost APR, an alternative or complement to the first
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TABLE IV
DISTRIBUTION OF THE NUMBER OF FAILING TEST CASES OVER THE

NUMBER OF FIXED/UNFIXED BUGS.

# failing
test cases

# unfixed
bugs

# p-fixed
bugs

# p/c-fixed bugs
& c-fixed bugs Total

1 124 37 57+31 = 81 (32.5%) 249
2 41 8 10+11 = 21 (30%) 70
3 19 1 2 + 1 = 3 (13%) 23
4 7 2 3 + 0 = 3 (25%) 12
5 3 1 2 + 0 = 2 (33.3%) 6
6 3 1 1 + 0 = 1 (20%) 5
7 5 0 0 + 1 = 1 (16.7%) 6
8 4 2 0 + 2 = 2 (25%) 8
9 2 0 0 + 0 = 0 2
10 2 0 0 + 0 = 0 2
>10 4 1 3 + 0= 3 (37.5%) 8

Total 214
(54.7%)

53
(13.6%)

78+46=124
(31.7%) 391

way (i.e., Item 1) would be to efficiently filter out, with
new patch validation methods, the plausible but incorrect
patches generated by APR tools.

In addition, we inspect the impact of the number of failing
test cases available when locating suspicious locations. As
shown in Equation 1 of Section II, the fault localization
performance is relevant to the number of failing test cases.
We thus investigate whether the bug-fixing performance of
APR tools is associated with the number of failing test cases.
Table IV presents the distribution of the number of failing
test cases over the number of fixed/unfixed bugs. From the
quantitative aspect, most correctly fixed bugs have one or two
failing test cases, while the ratio of correctly fixed bugs with
one or two failing test cases is a bit higher than the ratio of
correctly fixed bugs with at least three failing test cases. From
the aspect of quantitative test cases, it is difficult to explicitly
assess the relationship between the number of failing test cases
and the bug-fixing performance of APR tools.

B. RQ2: Dissection of Failing Test Cases

When the test cases of buggy programs failed to be exe-
cuted, we observe that the failing behavior can be summarized
into two main categories:
1) Unexpected value: The actual executed results do not

satisfy the expected results of programs specified in test
cases. For example, the bug Chart-1 shown in Figure 5,
its assertion code expects that the returned value of
lic.getItemCount() should be 1 (cf. the code at line-
409 highlighted with red background), while the actual
returned value is 0 after executing the test case (cf. the
information presented in the excerpted stack trace). So the
executed result does not satisfy the expected result, which
leads to the failing test.

2) Throwing exception: Throwing exceptions when the fail-
ing test cases are executed. For example, after executing
the test cases of bug Chart-4, it throws a java.lang
.NullPointerException, shown in Figure 6.

As shown in Figure 7, the 391 Defects4J bugs can be
grouped into three categories with their failing behavior: 70%
of them present the unexpected values, 25% of them throw

The failing test case of bug Chart-1:
396: public void test2947660() {

......
407: dataset.addValue(1.0, "S1", "C1");
408: LegendItemCollection lic = r.getLegendItems();

409: assertEquals(1, lic.getItemCount());

410: assertEquals("S1", lic.get(0).getLabel());
411: }

Excerpted stack trace after executing the test cases of bug Chart-1:
--- org.jfree.chart.renderer.category.junit.

AbstractCategoryItemRendererTests::test2947660
junit.framework.AssertionFailedError: expected:<1> but

was:<0>
at junit.framework.Assert.fail(Assert.java:57)
at junit.framework.Assert.failNotEquals(Assert.java:329)
at junit.framework.Assert.assertEquals(Assert.java:78)
at junit.framework.Assert.assertEquals(Assert.java:234)
at junit.framework.Assert.assertEquals(Assert.java:241)
at junit.framework.TestCase.assertEquals(TestCase.java
:409)

at org.jfree.chart.renderer.category.junit.AbstractCatego
ryItemRendererTests.test2947660(AbstractCategoryItemRen
dererTests.java:409)
......

Fig. 5. The failing test case and the excerpted stack trace after executing the
test cases of bug Chart-1.

--- org.jfree.chart.axis.junit.LogAxisTests::
testXYAutoRange1

java.lang.NullPointerException
at org.jfree.chart.plot.XYPlot.getDataRange(XYPlot.java
:4493)

at org.jfree.chart.axis.NumberAxis.autoAdjustRange(
NumberAxis.java:434)

at org.jfree.chart.axis.NumberAxis.configure(NumberAxis.
java:417)

at org.jfree.chart.axis.Axis.setPlot(Axis.java:1044)
at org.jfree.chart.plot.XYPlot.<init>(XYPlot.java:660)
at org.jfree.chart.ChartFactory.createScatterPlot(
ChartFactory.java:1490)

at org.jfree.chart.axis.junit.LogAxisTests.testXYAuto
Range1(LogAxisTests.java:260)
......

Fig. 6. Excerpted stack trace after executing the test cases of bug Chart-4.

Throwing 
exception
25% (99)

Unexpected value + 
throwing exception

5% (17)

Unexpected 
value

70% (275)

Fig. 7. Category of bugs with their failing behaviors.

exceptions, and the remaining 5% bugs return the unexpected
values as well as throw exceptions. As presented in Figure 8,
from a quantitative perspective (i.e., but looking at the raw
numbers of fixed bugs only), most correctly fixed bugs (68%
≈ 33+51

124 ) belong to the bugs with unexpected values. While if
we consider the ratio of bugs, it seems that the correctly fixed
bugs are even distributed in the three categories of bugs (i.e.,
{68%, 30%, 2%}→{70%, 25%, 5%}).

We further dissect the bugs associated with the unexpected
values and throwing exceptions with the data types of expected
values and the exception types, respectively. The related results
are presented in Figure 9 and Figure 10. Among the bugs with
unexpected values, the state-of-the-art APR systems present
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Fig. 10. Dissection of the fixed/unfixed bugs in terms of the types of throwing
exceptions.

the best performance on fixing the bugs associated with the
boolean type expected values (28.6% of correctly fixed
bugs), followed by string (18.7%), float (15.4%), excep
tion (13.2%), and int (12.1%). For the unfixed/incorrectly-
fixed bugs, the non-null asserting bugs (i.e., null in Figure 9,
asserting the returned value is not null) are the bugs that
are most difficult to be resolved by APR systems, which is
followed by the bugs expecting the boolean and string
data type. The state-of-the-art APR systems presented the best
performance on fixing bugs associated with boolean type
expected values, while achieved the worst performance on
fixing non-null asserting bugs. Meanwhile, non-null assert-
ing bugs as well as the bugs associated with boolean and
string type expected values are still the main challenge
that should be addressed by the future APR.

For the bugs throwing exceptions, the existing APR sys-
tems achieve the best performance on fixing NullPointer
Exception bugs. This result can be explained by the
existence of 1) APR tools specifically designed to address
such exception type (e.g., NPEFix [43] and VFix [44])
and (2) specific targeted fix patterns [31], [48] for
NullPointerException bugs. The bugs concerning
Self-defined exceptions (i.e., exceptions specifically de-
fined by developers for the programs) are not easily resolved
by existing APR systems. The following toughly resolved
bugs are related to the IllegalStateException and
IndexOutOfBoundsException. Furthermore, the bugs
about NoSuchMethodError, UnsupportedOperation
Exception, NotSerializableException, Array
StoreException, ClassNotFoundException, and
IllegalStateException exceptions cannot be fixed by
any state-of-the-art APR systems. For throwing exception
bugs, the existing APR systems presented the best perfor-
mance on fixing NullPointerException bugs, and the
tough task of them is to resolve the bugs throwing developer-
defined exceptions.

C. RQ3: Stack Trace Information from Failing Tests

In the spectrum-based fault localization process of generate-
and-validate program repair, the passing/failing test cases
are used to calculate the suspiciousness values for ranking
suspicious statements to spot bug positions (cf. Formula 1
Section II). APR systems will revise each suspicious statement
in the ranked list one by one to generate patch candidates
until one valid patch (that makes the patched program pass all
tests [46]) is found. It is somehow different from the manually
debugging process, especially for those bugs with the crashed
statements in stack trace after executing test cases.

In practice, when a bug arises with the crashed statements
in a stack trace (e.g., the crashed statements of bug Lang-6
shown in Figure 11), developers are prone to address these
crashed statements than others. In the APR literature, only
ssFix [21] leverages those crashed statements to purify the
exposed bug positions. To the best of our knowledge, we are
the first to investigate to what extent the crashed statements
after executing the failing test cases can impact the fault
localization and bug-fixing performance of an APR system.

Regarding the information contained in the stack trace,
the first line indicates the failing executed test case (e.g.,
org.apache.commons.lang3.StringUtilsTest::
testEscapeSurrogatePairs in Figure 11). The second
line indicates the concrete error which causes the program
to terminate abnormally (e.g., exception or assertion failure),
which may provide a detailed specification of the exception,
such as the java.lang.StringIndexOutOfBounds
Exception with the potential reason “String index out of
range: 2” shown in Figure 11. Then, the remaining contents
describe the full stack trace with the crashed statements that
are presented with the related classes as well as their line
numbers. These crashed statements are presented reversely
in terms of their execution order. For some cases, the latest
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01: --- org.apache.commons.lang3.StringUtilsTest::testEscapeSurrogatePairs
02: java.lang.StringIndexOutOfBoundsException: String index out of range: 2
03: at java.lang.String.charAt(String.java:658)
04: at java.lang.Character.codePointAt(Character.java:4884)
05: at org.apache.commons.lang3.text.translate.CharSequenceTranslator.translate(CharSequenceTranslator.java:95)
06: at org.apache.commons.lang3.text.translate.CharSequenceTranslator.translate(CharSequenceTranslator.java:59)
07: at org.apache.commons.lang3.StringEscapeUtils.escapeCsv(StringEscapeUtils.java:556)
08: at org.apache.commons.lang3.StringUtilsTest.testEscapeSurrogatePairs(StringUtilsTest.java:2187)
09: at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
10: at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
11: at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
12: at java.lang.reflect.Method.invoke(Method.java:498)
13: at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47)
14: at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
15: at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44)
16: at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)

......

Fig. 11. Excerpted stack trace after executing the test cases of bug Lang-6.

diff --git a/src/main/java/org/apache/commons/lang3/text/translate/CharSequenceTranslator.java b/src/main/java/org/apache/
commons/lang3/text/translate/CharSequenceTranslator.java

index 0500460..4d010ea 100644
--- a/src/main/java/org/apache/commons/lang3/text/translate/CharSequenceTranslator.java
+++ b/src/main/java/org/apache/commons/lang3/text/translate/CharSequenceTranslator.java
@@ -92,7 +92,7 @@ public abstract class CharSequenceTranslator {
// // contract with translators is that they have to understand codepoints
// // and they just took care of a surrogate pair

for (int pt = 0; pt < consumed; pt++) {
- pos += Character.charCount(Character.codePointAt(input, pos));
+ pos += Character.charCount(Character.codePointAt(input, pt));

}
}

}

Fig. 12. Developer’s patch for fixing bug Lang-6.

executed statements are not from the buggy program but, e.g.,
from APIs. For example, in Figure 11, the first two crashed
statements (i.e., lines 03 and 04) are the last executed two
statements of the failing test case, but they come from the
Java framework API and not from the buggy program Lang-6.
Therefore, in the manual debugging way, developers will make
trials on the remaining crashed statements one by one until the
bug is fixed. For bug Lang-6, the line-95 statement in the class
org.apache.commons.lang3.text.translate.Ch
arSequenceTranslator highlighted in red at the line-
05 in Figure 11 will be first addressed by manual debug-
ging. Indeed, the line-95 statement is the buggy statement of
Lang-6 (cf. the developer’s patch of fixing Lang-6 shown in
Figure 12). However, GZoltar+Ochiai fails to expose the bug
position of Lang-6.

After manual review, we observe that all Defects4J bugs
(391 bugs in version 1.5.0 and 835 bugs in the latest version
2.0.06) will print the stack trace information after executing
their test cases. With the observation, we infer that the stack
trace information can be used to improve the performance
of fault localization and generate-and-validate program repair.
With this hypothesis, we propose two straightforward heuristic
principles to rerank the suspicious statement list of spectrum-
based fault localization, and feed 4 APR tools (AVATAR, TBar,
SimFix, ACS) with the reranked suspicious statements.

1) Principle 1: prioritize the source code statements in
a stack trace. This principle straightforwardly considers
the source code statements in stack trace have a higher
suspiciousness value than other statements. The stack

6https://github.com/rjust/defects4j

trace contains four kinds of statements: (1) the statements
from the dependent external libraries (e.g., the third-party
libraries for the building or testing framework) of the
buggy program, (2) the statements in the source code of
Java Development Kit (JDK), (3) the statements in the
test cases of the buggy program, and (4) the statements
in the source code of the buggy program. APR tools
aim to solve the bugs in source code. So we consider
prioritizing the fourth kind of statements located in the
source code of the buggy program and the other three
kinds of statements will be discarded. For example, in
Figure 11, the statements presented in Lines 05 to 08
will be considered while others will be discarded.

2) Principle 2: prioritize the code methods and classes
targeted by test cases. This principle aims to figure
out the source code range that is targeted by test cases.
In practice, for the convenience of maintenance and
the high readability of program code, developers often
write test code for their programs following a canonical
naming convention that names the test classes and test
methods with their targeting class and method names
(e.g., Test*** or ***Test). According to this naming
convention, we suppose that the failing test cases are
always associated with the related source code. Therefore,
we propose that the statements in the scope of the
methods and classes tested by the failing test cases have
a higher possibility to be faulty than other statements.
For example, the failing test case of bug Time-7 is
org.joda.time.format.TestDateTimeForma
tter::testParseInto_monthDay_feb29_new
York_startOfYear (shown in Figure 13). The bug
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01: --- org.joda.time.format.TestDateTimeFormatter::testParseInto_monthDay_feb29_newYork_startOfYear
02: org.joda.time.IllegalFieldValueException: Cannot parse "2 29": Value 29 for dayOfMonth must be in the range [1,28]
03: at org.joda.time.field.FieldUtils.verifyValueBounds(FieldUtils.java:220)
04: at org.joda.time.field.PreciseDurationDateTimeField.set(PreciseDurationDateTimeField.java:78)
05: at org.joda.time.format.DateTimeParserBucket$SavedField.set(DateTimeParserBucket.java:483)
06: at org.joda.time.format.DateTimeParserBucket.computeMillis(DateTimeParserBucket.java:366)
07: at org.joda.time.format.DateTimeParserBucket.computeMillis(DateTimeParserBucket.java:359)
08: at org.joda.time.format.DateTimeFormatter.parseInto(DateTimeFormatter.java:715)
09: at org.joda.time.format.TestDateTimeFormatter.testParseInto_monthDay_feb29_newYork_startOfYear

......

Fig. 13. Excerpted stack trace after executing test cases of bug Time-7.

diff --git a/src/main/java/org/joda/time/format/DateTimeFormatter.java b/src/main/java/org/joda/time/format/
DateTimeFormatter.java

index 913d036..447674a 100644
--- a/src/main/java/org/joda/time/format/DateTimeFormatter.java
+++ b/src/main/java/org/joda/time/format/DateTimeFormatter.java
@@ -700,14 +700,14 @@ public class DateTimeFormatter {

public int parseInto(ReadWritableInstant instant, String text, int position) {
DateTimeParser parser = requireParser();
if (instant == null) {

throw new IllegalArgumentException("Instant must not be null");
}

long instantMillis = instant.getMillis();
Chronology chrono = instant.getChronology();

+ int defaultYear = DateTimeUtils.getChronology(chrono).year().get(instantMillis);
long instantLocal = instantMillis + chrono.getZone().getOffset(instantMillis);
chrono = selectChronology(chrono);

- int defaultYear = chrono.year().get(instantLocal);

DateTimeParserBucket bucket = new DateTimeParserBucket(
instantLocal, chrono, iLocale, iPivotYear, defaultYear);

Fig. 14. Developer’s patch for fixing bug Time-7.

position indeed is located in the method parseInto
of the class org.joda.time.format.DateTime
Formatter, as shown in Figure 14.

With the two principles, we propose a straightforward
algorithm (i.e., Algorithm 1) to rerank the list of suspicious
statements exposed by GZoltar + Ochiai. The source code
statements of a buggy program in the stack trace are assigned
with the highest priority among all suspicious statements (cf.
line 9 and line 20 in Algorithm 1). The failing test cases are
always designed for validating the functionality of the related
methods in source code. Thus, the suspicious statements
belonging to failing-test-related methods are assigned with a
second higher priority than other suspicious statements (cf.
lines 14 and 20). The testing classes of failing test cases have
a wider range than the corresponding test cases on exposing
faulty positions, so the suspicious statements in the source
code classes concerning the associated failing test classes are
assigned with lower priority than the failing test cases (cf.
lines 17 and 20). Finally, the remaining suspicious statements
are ranked with the original order in the lowest priority (cf.
lines 8, 18 and 20).

1) Fault Localization: In this experiment, all 835 bugs of
Defects4J version 2.0.0 are considered. The fault localization
is implemented with the spectrum-based fault localization
technique (i.e., GZoltar + Ochiai) widely used in the APR
community. Figure 15 presents the fault localization results
refined with the aforementioned two principles comparing
against the spectrum-based fault localization. Overall, it ex-
plicitly shows that fault localization performance has been
improved by ranking the faulty statements in higher ranked
locations with our proposed two principles than the original

Algorithm 1: Reranking the suspicious statements.
Input : L, a list of suspicious statements for a buggy program.
Input : Sp1, a sorted list of statements with principle 1.
Input : Mp2, a set of methods with principle 2.
Input : Cp2, a set of classes with principle 2.
Output : Lr , the reranked list of suspicious statements.

1 Function rerank ()
2 /* Initialize the suspicious lines Lc in Cp2. */
3 Lc := ∅;
4 /* Initialize the suspicious lines Lm in Mp2. */
5 Lm := ∅;
6 foreach l ∈ L do
7 if l ∈ Sp1 then
8 L.remove(l);
9 Continue;

10 foreach C ∈ Cp2 do
11 if l ∈ C then
12 foreach M ∈Mp2 do
13 if l ∈M then
14 Lm.add(l);
15 Break;

16 if !(l ∈ Lm) then
17 Lc.add(l);

18 L.remove(l);
19 Break;

20 Lr .addAll(Sp1).addAll(Lm).addAll(Lc).addAll(L);
21 Return(Lr);

spectrum-based fault localization technique. More specifically,
as presented in Figure 15, after considering the two principles
for fault localization, the 1st quartile, middle, mean, and 3rd
quartile values of spotted bug locations are improved with 1,
4, 65, and 53, respectively. Furthermore, 16 bugs are newly
exposed with the two principles that cannot be localized be-
fore. To sum up, our proposed two straightforward principles
can effectively improve the fault localization performance for
the spectrum-based fault localization technique.
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Fig. 15. Comparison on the fault localization performance.

2) Bug Fixing Performance: We further assess whether our
proposed two principles can be used to improve the bug-fixing
performance of generate-and-validate APR tools. To that end,
we apply the improved bug-spotting results to four state-of-
the-art APR tools (namely AVATAR, TBar, SimFix, and ACS)
to re-evaluate their bug-fixing performance. Other APR tools
are not considered as we failed to re-execute them because of
several reasons (i.e., unavailable, unconfigurable, specifically
fault localization technique, and specific settings [18], [46]).

As presented in Table V, with our proposed principles
for fault localization, all of the 26 bugs, that are correctly
fixed by AVATAR with the normal fault localization (normal
FL, i.e., GZoltar + Ochiai), still can be correctly fixed by
AVATAR with our proposed two principles. And AVATAR can
(correctly) fix (6)8 more bugs, as they are correctly located by
our proposed principles but are failed to be located by normal
FL. AVATAR also correctly fixes 2 bugs plausibly fixed before.
TBar correctly fixes 35 bugs, 11 of them are newly fixed by
it, 2 of them are plausibly fixed before. And TBar avoides
plausibly fixing 10 bugs. SimFix correctly fixes 3 previously
unfixed bugs and avoids generating plausible patches for 4
bugs, but it fails to fix one previously correctly fixed bug. ACS
successfully reproduces all previously correct patches without
fixing any new bugs, and avoids generating plausible patches
for 6 bugs. To sum up, the correct ratios of patches generated
by the four APR tools are improved when they are fed with
the faulty positions refined with proposed principles.

TABLE V
DETAILS ON IMPROVED BUG-FIXING PERFORMANCE.

APR
tools

GZoltar + Ochiai GZoltar + Ochiai + Principles
# fixed bugs CR (%) # fixed bugs CR (%)

AVATAR 26/82 31.7 (26+2+6)/(82-0+8) +6.1
TBar 22/50 44.0 (22+2+11)/(50-10+12) +23.3
SimFix 17/27 63.0 (17+(-1)+3)/(27-5∗+3) +13.0
ACS 10/20 50.0 (10+0+0)/(20-6+0) +21.4

The data in the 4th column are presented in the format (x+y+z)/(X−Y+Z),
where (x)X represents the number of bugs (correctly) fixed by the APR tool
with GZoltar + Ochiai. y and Y represent the number of bugs (plausibly fixed
by the APR tool with GZoltar + Ochiai) correct fixed / unfixed by the APR
tool with our proposed prinpicles, respectively. CR denotes the correctness
ratio of generated patches.

Looking at the efficiency of fixing bugs in terms of the
number of generated patch candidates [46], shown in Fig-
ure 16, the efficiency of AVATAR, TBar and SimFix are
dramatically improved by generating fewer patch candidates
for fixing bugs with our proposed principles than the normal
fault localization, since fewer non-faulty statements will be
mutated by them to generate the nonsensical/plausible patch
candidates. Fewer patch candidates will spend less source (e.g.,
time) for compiling and testing the patched programs. We also

ACS

SimFix

TBar

AVATAR

0 1000 2000 3000
# Generated Patch Candidates

FL
GZoltar + Ochiai
GZoltar + Ochiai + Our proposed principles

Fig. 16. Comparison on the number of patch candidates generated by AVATAR,
TBar, SimFix and ACS.

observe that the efficiency of ACS is improved with a few
increases as ¬ ACS produces far fewer candidate patches than
other tools, so the improvement is not obvious; and ­ most
of the correctly fixed bugs are precisely localized with the
normal fault localization. Overall, these results indicate that
our proposed two straightforward principles can be used to
improve the bug fixing performance of the generate-and-
validate program repair tools by reducing the trials on non-
faulty statements.

In the APR community, some APR tools (e.g., NPEFix [43]
and VFix [44] and fix patterns [31], [48] have been specifically
proposed for null pointer exception bugs. Indeed, some bugs
can be emerged by throwing null pointer exceptions or other
exceptions (cf. Section IV-B and Figure 10). We thus explore
whether the stack trace information can be used to match fix
patterns in pattern-based APR. To this end, we preferentially
match the null pointer related fix patterns over other fix
patterns of AVATAR for the 12 null pointer exceptions bugs
that are fixed by AVATAR. The experimental results show that,
according to matching the null pointer related fix patterns
for the bugs throwing null pointer exception, the numbers
of generated patch candidates for fixing each of the 12 bugs
are decreased. Overall, the average number of generated patch
candidates is decreased by 746. The efficiency of fixing the
null pointer bugs is improved effectively by matching the
related fix patterns with the throwing exceptions in the stack
trace.

The information in stack trace after executing the bug-
triggering test cases can be used to effectively improve
the performance on fault localization and program repair.
And the information in stack trace shows the potential of
matching adequate fix patterns for bugs.

V. THREATS TO VALIDITY

One of the threats to external validity is the target language
of bugs. Only Java bugs are considered in this study. Although
the format of test cases and stack traces are different in other
languages, we believe that the conclusion and methodology
can be applied to other languages since the function of
test cases and information in stack traces are similar among
different languages. Another external threat to validity is that
only one Java bug dataset, namely Defects4J, is considered.
However, our study mainly focuses on test cases and stack
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traces, which are common elements among Java projects
independent from a specific dataset. The other external threat
to validity is that we only consider four APR tools, namely
AVATAR, TBar, SimFix and ACS, to evaluate the improvement
of fault localization for APR tools. Since our optimization
principles are directly applied to the fault localization result
of the GZoltar/Ochiai framework, instead of APR tools, the
improvement for fault localization given by this study can
benefit other APR tools as well.

The internal threat is that more semantic information of test
cases should be explored. In this study, we only consider the
number and type of test cases, ignoring the detailed semantic
information in testing code. We leave this point as future work.

The construct threats to the validity include the stack trace
availability for failing test cases. Java projects with the JUnit
framework often write test cases with assertions, which may
throw exceptions if the test cases fail. Thus, our principles can
be applied to Java projects without additional efforts. However,
this may not apply to other programming languages or testing
frameworks. The threat can be mitigated by augmenting or
converting given test cases in a systematic way. Making test
cases throw stack traces is not a complicated strategy; it can
be readily applicable to other programming contexts.

VI. RELATED WORK

Fault localization in APR: Locating a (suspicious) buggy
element(s) in a source code is the first step of APR pipelines.
Thus, many APR techniques rely on existing fault localiza-
tion (FL) tools. There are two main lines of FL research
utilized by APR tools: (1) spectrum-based fault localization
(SBFL) and (2) information retrieval (IR)-based bug local-
ization (IRBL). While some recent studies leverage the latter
(such as iFixR [15]), most APR tools resort to the former
as it can specify more precise locations (such as statements),
even though it has a fundamental limitation that SBFL requires
multiple passing and failing test cases with test oracles.

There have been investigations to identify the impact of
FL techniques on the performance of the APR pipelines.
These studies inspected how different FL settings affect
fault localization accuracy as well as bug-fixing effectiveness.
Liu [18] et al. studied to what extent FL techniques impact
the performance of the APR pipeline. They investigated the
bias on the performance comparison among APR tools caused
by fault localization. Based on their findings, they called for
new guidelines for assessing and reporting on the performance
of APR systems. Our study is orthogonal to their work but
proves that the bias of fault localization results can be reduced
by optimizing the fault localization process with proposed
principles. Wen et al. [59] examined the influence of the fault
space on the success of finding correct patches by the APR
tool, where fault space is defined as a ranked list of suspicious
entities in a program. Our study directly considers the exact
location of faults and their correlation with the success of
fixing bugs.
Test cases for generate-and-validate APR: The quality of
test cases is a critical factor to achieve a better performance

in automated program repair. Most APR techniques (of course,
including generate-and-validate APR), rely on test cases given
by developers or generated by automatic test generation tools.
For example, in generate-and-validate APR, test cases are
leveraged to locate suspicious buggy statements, and also to
validate that a patch candidate generated by an APR technique
has actually fixed the given bug. In addition, test cases
can be re-utilized when automatically determining whether a
validated patch is correct or not [22], [60].

Recent studies examined the impact of test cases on the
performance of program repair. Jiang et al. [61] pointed out
that the weakness of real-world program test suites is a
possible reason for the low performance of APR systems.
They manually analyzed 50 real-world defects in the Defects4J
benchmark, summarizing 7 fault localization strategies and 7
patch generation strategies to benefit defect localization and
fixing without detailed evaluation of these strategies. However,
our study concretely investigates to what extent our proposed
principles can improve the performance of APR tools.

VII. CONCLUSION

To alleviate the burden of manual debugging, automated
program repair (APR) tools have been explored in the latest
decade. Generate-and-validate APR is one of the widely
studied domains of APR that relies on the execution of test
cases to spot bug positions and validate the correctness of
generated patch candidates. In this study, we revisit the test
cases in the process of fault localization and the process of
program repair to boost the performance of APR. To this end,
we first investigate the relationship between the bug-fixing
performance of state-of-the-art APR tools and the spectrum-
based fault localization as well as the quantitative perspective
of failing test cases. We then dissect the characteristics of test
cases to understand the achieved bug-fixing performance of
state-of-the-art APR systems. Eventually, analyzing the infor-
mation in stack traces after executing the bug-triggering test
cases, we propose two principles to improve the performance
of both fault localization and program repair. Our experimental
results also confirm that the information in stack traces shows
the potential of matching adequate fix patterns for bugs. Our
replication package is publicly available at:

https://github.com/mrdrivingduck/TestCases4APR
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