
https://doi.org/10.1007/s10664-019-09780-z

FixMiner: Mining relevant fix patterns for automated
program repair

Anil Koyuncu1 ·Kui Liu1 ·Tegawendé F. Bissyandé1 ·Dongsun Kim2 ·
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Abstract
Patching is a common activity in software development. It is generally performed on a
source code base to address bugs or add new functionalities. In this context, given the recur-
rence of bugs across projects, the associated similar patches can be leveraged to extract
generic fix actions. While the literature includes various approaches leveraging similarity
among patches to guide program repair, these approaches often do not yield fix patterns
that are tractable and reusable as actionable input to APR systems. In this paper, we pro-
pose a systematic and automated approach to mining relevant and actionable fix patterns
based on an iterative clustering strategy applied to atomic changes within patches. The goal
of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other
patch generation systems. Our technique, FixMiner, leverages Rich Edit Script
which is a specialized tree structure of the edit scripts that captures the AST-level con-
text of the code changes. FixMiner uses different tree representations of Rich Edit
Scripts for each round of clustering to identify similar changes. These are abstract syntax
trees, edit actions trees, and code context trees. We have evaluated FixMiner on thou-
sands of software patches collected from open source projects. Preliminary results show that
we are able to mine accurate patterns, efficiently exploiting change information in Rich
Edit Scripts. We further integrated the mined patterns to an automated program repair
prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J
benchmark. Beyond this quantitative performance, we show that the mined fix patterns
are sufficiently relevant to produce patches with a high probability of correctness: 81% of
PARFixMiner’s generated plausible patches are correct.
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1 Introduction

Code change patterns have various uses in the software engineering domain. They are
notably used for labeling changes (Pan et al. 2009), triaging developer commits (Tian et al.
2012) or predicting changes (Ying et al. 2004). In recent years, fix patterns have been
heavily leveraged in the software maintenance community, notably for building patch gen-
eration systems, which now attract growing interest in the literature (Monperrus 2018).
Automated Program Repair (APR) has indeed gained incredible momentum, and various
approaches (Nguyen et al. 2013; Weimer et al. 2009; Le Goues et al. 2012a; Kim et al.
2013; Coker and Hafiz 2013; Ke et al. 2015; Mechtaev et al. 2015; Long and Rinard 2015,
2016; Le et al. 2016a b, 2017; Chen et al. 2017; Long et al. 2017; Xuan et al. 2017; Xiong
et al. 2017; Jiang et al. 2018; Wen et al. 2018; Hua et al. 2018; Liu et al. 2019, b) have been
proposed, aiming at reducing manual debugging efforts through automatically generating
patches. A common and reliable strategy in automatic program repair is to generate con-
crete patches based on fix patterns (Kim et al. 2013) (also referred to as fix templates (Liu
and Zhong 2018) or program transformation schemas (Hua et al. 2018)). Several APR sys-
tems (Kim et al. 2013; Saha et al. 2017; Durieux et al. 2017; Liu and Zhong 2018; Hua
et al. 2018; Martinez and Monperrus 2018; Liu et al. 2019, b) in the literature implement
this strategy by using diverse sets of fix patterns obtained either via manual generation or
automatic mining of bug fix datasets.

In PAR (Kim et al. 2013), the authors mined fix patterns by inspecting 60,000 developer
patches manually. Similarly, for Relifix (Tan and Roychoudhury 2015), a manual inspection
of 73 real software regression bug fixes is performed to infer fix patterns. Manual mining
is however tedious, error-prone, and cannot scale. Thus, in order to overcome the limita-
tions of manual pattern inference, several research groups have initiated studies towards
automatically inferring bug fix patterns. With Genesis (Long et al. 2017), Long et al. pro-
posed to automatically infer code transforms for patch generation. Genesis infers 108 code
transforms, from a space of 577 sampled transforms, with specific code contexts. However,
this work limits the search space to previously successful patches from only three classes of
defects of Java programs: null pointer, out of bounds, and class cast related defects.

Liu and Zhong (Liu and Zhong 2018) proposed SOFix to explore fix patterns for Java pro-
grams from Q&A posts in Stack Overflow, which mines patterns based on GumTree (Falleri
et al. 2014) edit scripts, and builds different categories based on repair pattern isomorphism.
SOFix then mines a repair pattern from each category. However, the authors note that most
of the categories are redundant or even irrelevant, mainly due to two major issues: (1) a
considerable portion of code samples are designed for purposes other than repairing bugs;
(2) since the underlying GumTree tool relies on structural positions to extract modifica-
tions, these “modifications do not present the desirable semantic mappings”. They relied on
heuristics for manually filtering categories (e.g., categories that contain several modifica-
tions), and then after SOFIX mines repair patterns they have to manually select useful ones
(e.g., merging some repair patterns due to their similar semantics).

Liu et al. (2018a) and Rolim et al. (2018) proposed to mine fix patterns from static anal-
ysis violations from FindBugs and PMD respectively. Both approaches, leverage a similar
methodology in the inference process. Rolim et al. (2018) rely on the distance among edit
scripts: edit scripts with low distances among them are grouped together according to a
defined similarity threshold. Liu et al. (2018a), on the other hand, leverage deep learning to
learn features of edit scripts, to find clusters of similar edit scripts. Eventually, both works
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do not consider code context in their edit scripts and manually derive the fix patterns from
the clusters of similar edit scripts of patches.

In another vein, CapGen (Wen et al. 2018) and SimFix (Jiang et al. 2018) propose to use
frequency of code change actions. The former uses it to drive patch selection, while the latter
uses it in computing donor code similarity for patch prioritization. In both cases, however,
the notion of patterns is not an actionable artefact, but rather a supplementary information
that guides their patch generation system. Although we concurrently1 share with SimFix
and CapGen the idea of adding more contextual information for patch generation, our objec-
tive is to infer actionable fix patterns that are tractable and reusable as input to other APR
systems.

Table 1 presents an overview of different automated mining strategies implemented in lit-
erature to obtain diverse sets of fix patterns. Some of the strategies are directly presented as
part of APR systems, while others are independent approaches. We characterize the different
strategies by considering the diff representation format, the use of contextual information,
the tractability of patterns (i.e., what extent they are separate and reusable components in
patch generation systems), and the scope of mining (i.e., whether the scope is limited to
specific code changes). Overall, although the literature approaches can come handy for dis-
covering diverse sets of fix patterns, the reality is that the intractability of the fix patterns
and the generalizability of the mining strategies remain a challenge for deriving relevant
patterns for program repair.

This paper. We propose to investigate the feasibility of mining relevant fix patterns that
can be easily integrated into an automated pattern-based program repair system. To that
end, we propose an iterative and three-fold clustering strategy, FixMiner, to discover
relevant fix patterns automatically from atomic changes within real-world developer
fixes. FixMiner is a pattern mining approach to produce fix patterns for program repair
systems. We present in this paper the concept of Rich Edit Script which is a spe-
cialized tree data structure of the edit scripts that captures the AST-level context of code
changes. To infer patterns, FixMiner leverages identical trees, which are computed
based on the following information encoded in Rich Edit Scripts for each round
of the iteration: abstract syntax tree, edit actions tree, and code context tree.

Contribution. We propose the FixMiner pattern mining tool as a separate and reusable
component that can be leveraged in other patch generation systems.

Paper content. Our contributions are:

– We present the architecture of a pattern inference system, FixMiner, which builds
on a three-fold clustering strategy where we iteratively discover similar changes
based on different tree representations encoding contexts, change operations and
code tokens.

– We assess the capability of FixMiner to discover patterns by mining fix patterns
among 11 416 patches addressing user-reported bugs in 43 open source projects. We
further relate the discovered patterns to those that can be found in a dataset used
by the program repair community (Just et al. 2014). We assess the compatibility of
FixMiner patterns with patterns in the literature.

1The initial version of this paper was written concurrently to SimFix and CapGen.
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– Finally, we investigate the relevance of the mined fix patterns by embedding them
as part of an Automated Program Repair system. Our experimental results on the
Defects4J benchmark show that our mined patterns are effective for fixing 26 bugs.
We find that the FixMiner patterns are relevant as they lead to generating plausible
patches that are mostly correct.

2 Motivation

Mining, enumerating and understanding code changes have been a key challenge of software
maintenance in recent years. Ten years ago, Pan et al. have contributed with a manually-
compiled catalog of 27 code change patterns related to bug fixing (Pan et al. 2009). Such
“bug fix patterns” however are generic patterns (e.g., IF-RMV: removal of an If Predicate)
which represent the type of changes that are often fixing bugs. More recently, thanks to the
availability of new AST differencing tools, researchers have proposed to automatically mine
change patterns (Martinez et al. 2013; Osman et al. 2014; Oumarou et al. 2015; Lin et al.
2016). Such patterns have been mostly leveraged for analysing and towards understanding
characteristics of bug fixes. In practice, however, the inferred patterns may turn out to be
irrelevant and intractable.

We argue however that mining fix patterns can help for guiding mutation operations for
patch generation. In this case, there is a need to mine truly recurrent change patterns to
which repair semantics can be attached, and to provide accurate, fine-grained patterns that
can be actionable in practice, i.e., separate and reusable as inputs to other processes.

Our intuition is that relevant patterns cannot be mined globally since bug fixes in the wild
are subject to noisy details due to tangled changes (Herzig and Zeller 2013). There is thus a
need to break patches into atomic units (contiguous code lines forming a hunk) and reason
about the recurrences of the code changes among them. To mine changes, we propose to
rely on the edit script format, which provides a fine-grained representation of code changes,
where different layers of information are included:

– the context, i.e., AST node type of the code element being changed (e.g., a modifier in
declaration statements, should not be generalized to other types of statements);

– the change operation (e.g., a “remove then add” sequence should not be confused with
“add then remove” as it may have a distinct meaning in a hierarchical model such as
the AST);

– and code tokens (e.g., changing calls to “Log.warn” should not be confused to any other
API method).

Our idea is to iteratively find patterns within the contexts, and patterns of change
operations for each context, and patterns of recurrently affected literals in these operations.

We now provide background information for understanding the execution as well as the
information processed by FixMiner.

2.1 Abstract Syntax Tree

Code representation is an essential step in the analysis and verification of programs.
Abstract syntax trees (ASTs), which are generally produced for program analysis and
transformations, are data structures that provide an efficient form of representing program
structures to reason about syntax and even semantics. An AST indeed represents all of the
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Fig. 1 Example Java class

syntactical elements of the programming language and focuses on the rules rather than ele-
ments like braces or semicolons that terminate statements in some popular languages like
Java or C. The AST is a hierarchical representation where the elements of each program-
ming statement are broken down recursively into their parts. Each node in the tree thus
denotes a construct occurring in the programming language.

Formally, let t be an AST and N be a set of AST nodes in t . An AST t has a root that
is a node referred to as root (t) ∈ N . Each node n ∈ N (and n �= root (t)) has a parent
denoted as parent (n) = p ∈ N . Note that there is no parent node of root (t). Furthermore,
each node n has a set of child nodes (denoted as children(n) ⊂ N ). A label l (i.e., AST
node type) is assigned to each node from a given alphabet L (label(n) = l ∈ L). Finally,
each node has a string value v (token(n) = v where n ∈ N and v is an arbitrary string)
representing the corresponding raw code token. Consider the AST representation in Fig. 2
of the Java code in Fig. 1. We note that the illustrated AST has nodes with labels matching
structural elements of the Java language (e.g., MethodDeclaration, IfStatement
or StringLiteral) and can be associated with values representing the raw tokens in
the code (e.g., A node labelled StringLiteral from our AST is associated to value
“Hi!”) (Fig. 2).

2.2 Code differencing

Differencing two versions of a program is the key pre-processing step of all studies on
software evolution. The evolved parts must be captured in a way that makes it easy for
developers to understand or analyze the changes. Developers generally deal well with text-
based differencing tools, such as the GNU Diff represents changes as addition and removal
of source code lines as shown in Fig. 3. The main issue with this text-based differencing is
that it does not provide a fine-grained representation of the change (i.e., StringLiteral
Replacement) and thus it is poorly suited for systematically analysing the changes.

CompilationUnit

TypeDeclaration

SimpleName: Helloworld MethodDeclaration

SimpleName: helloSimpleType: String SingleVariableDeclaration Block

IfStatementSimpleName:iPrimitiveType: intSimpleName: String

ReturnStatement

StringLiteral: Hi!NumberLiteral: 0SimpleName: i

Fig. 2 AST representation of the Helloworld class
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Fig. 3 GNU diff format

To address the challenges of code differencing, recent algorithms have been proposed
based on tree structures (such as the AST). ChangeDistiller and GumTree are examples of
such algorithms which produce edit scripts that detail the operations to be performed on the
nodes of a given AST (as formalized in Section 2.1) to yield another AST corresponding
to the new version of the code. In particular, in this work, we build on GumTree’s core
algorithms for preparing an edit script. An edit script is a sequence of edit actions describing
the following code change actions:

– UPD where an upd(n, v) action transforms the AST by replacing the old value of an
AST node n with the new value v.

– INS where an ins(n, np, i, l, v) action inserts a new node n with v as value and l as
label. If the parent np is specified, n is inserted as the ith child of np , otherwise n is the
root node.

– DEL where a del(n) action removes the leaf node n from the tree.
– MOV where a mov(n, np, i) action moves the subtree having node n as root to make it

the ith child of a parent node np .

An edit action, embeds information about the node (i.e., the relevant node in the whole
AST tree of the parsed program), the operator (i.e., UPD, INS, DEL, and MOV) which
describes the action performed, and the raw tokens involved in the change.

2.3 Tangled code changes

Solving a single problem per patch is often considered as a best practice to facilitate
maintenance tasks. However, often patches in real-world projects address multiple prob-
lems in a patch (Tao and Kim 2015; Koyuncu et al. 2017). Developers often commit bug
fixing code changes together with changes unrelated to fix such as functionality enhance-
ments, feature requests, refactorings, or documentation. Such patches are called tangled
patches (Herzig and Zeller 2013) or mixed-purpose fixing commits (Nguyen et al. 2013).
Nguyen et al. found that 11% to 39% of all the fixing commits used for mining archives
were tangled (Nguyen et al. 2013).

Consider the example patch from GWT illustrated in Fig. 4. The patch is intended to
fix the issue2 that reported a failure in some web browsers when the page is served with a
certain mime type (i.e., application/xhtml+xml). The developer fixes the issue by showing
a warning when such mime type is encountered. However, in addition to this change, a typo
has been addressed in the commit. Since the typo is not related to the fix, the fixing commit
is tangled. There is thus a need to separately consider single code hunks within a commit to

2https://github.com/gwtproject/gwt/issues/676
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Fig. 4 Tangled commit

allow the pattern inference to focus on finding recurrent atomic changes that are relevant to
bug fixing operations.

3 Approach

FixMiner aims to discover relevant fix patterns from the atomic changes within bug fixing
patches in software repositories. To that end, we mine code changes that are similar in terms

Code changes in
Software repositories patches Rich Edit Scripts Search index Identical Trees Clusters

Step 0 Step 1 Step 2 Step 3 Step 4

Iterative folding

Fig. 5 The FixMiner Approach. At each iteration, the search index is refined, and the computation of tree
similarity is specialized in specific AST information details
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of context, operations, and the programming tokens that are involved. Figure 5 illustrates an
overview of the FixMiner approach.

3.1 Overview

In Step 0, as an initial step, we collect the relevant bug-fixing patches (cf. Definition 1) from
project change tracking systems. Then, in Step 1, we compute a Rich Edit Script
representation (cf. Section 3.3) to describe a code change in terms of the context, operations
performed and tokens involved. Accordingly, we consider three specialized tree represen-
tations of the Rich Edit Script (cf. Definition 2) carrying information about either
the impacted AST node types, or the repair actions performed, or the program tokens
affected. FixMiner works in an iterative manner considering a single specialized tree
representation in each pattern mining iteration, to discover similar changes: first, changes
affecting the same code context (i.e., on identical abstract syntax trees) are identified; then
among those identified changes, changes using the same actions (i.e., identical sequence of
operations) are regrouped; and finally within each group, changes affecting the same tokens
set are mined. Therefore, in FixMiner, we perform a three-fold strategy, carrying out the
following steps in a pattern mining iteration:

– Step 2: We build a search index (cf. Definition 3) to identify the Rich Edit
Scripts that must be compared.

– Step 3: We detect identical trees (cf. Definition 4) by computing the distance between
two representations of Rich Edit Scripts.

– Step 4: We regroup identical trees into clusters (cf. Definition 5).

The initial pattern mining iteration uses Rich Edit Scripts computed in Step 1 as its
input, where the following rounds use clusters of identical trees yielded in Step 4 as their input.

In the following sections, we present the details of Steps 1-4, considering that a dataset
of bug fix patches is available.

3.2 Step 0 - patch collection

Definition 1 (Patch) A program patch is a transformation of a program into another pro-
gram, usually to fix a defect. Let P being a set of programs, a patch is represented by a pair
(p, p′), where p, p′ ∈ P are programs before and after applying the patch, respectively.
Concretely, a patch implements changes in code block(s) within source code file(s).

To identify bug fix patches in software repositories projects, we build on the bug linking
strategies implemented in the Jira issue tracking software. We use a similar approach to the
ones proposed by Fischer et al. (2003) and Thomas et al. (2013) in order to link commits to rel-
evant bug reports. Concretely, we crawl the bug reports for a given project and assess the links
with a two-step search strategy: (i) we check project commit logs to identify bug report IDs
and associate the corresponding bug reports to commits; then (ii) we check for bug reports that
are indeed considered as such (i.e., tagged as “BUG”) and are further marked as resolved
(i.e., with tags “RESOLVED” or “FIXED”), and completed (i.e., with status “CLOSED”).

We further curate the patch set by considering bug reports that are fixed by a single
commit. This provides more guarantees that the selected commits are indeed fixing the bugs
in a single shot (i.e., the bug does not require supplementary patches (Park et al. 2012)).
Eventually, we consider only changes that are made on the source code files: changes on
configuration, documentation, or test files are excluded.

Empirical Software Engineering (2020) 25:1980–20241988



Fig. 6 Patch of fixing bug Closure-93 in Defects4J dataset

3.3 Step 1 – Rich Edit Script computation

Definition 2 (Rich Edit Script) A Rich Edit Script r ∈ RE represents a
patch as a specialized tree of changes. This tree describes which operations are made on
a given AST, associated with the code block before patch application, to transform it into
another AST, associated with the code block after patch application: i.e., r : P → P. Each
node in the tree is an AST node affected by the patch. Every node in Rich Edit Script
has three different types of information: Shape, Action, and Token.

A bug-fix patch collected in open source change tracking systems is represented in the
GNU diff format based on addition and removal of source code lines as shown in Fig. 6.
This representation is not suitable for fine-grained analysis of changes.

To accurately reflect the change that has been performed, several algorithms have been
proposed based on tree structures (such as the AST) (Bille 2005; Pawlik and Augsten 2011;
Chawathe et al. 1996; Hashimoto and Mori 2008; Duley et al. 2012; Fluri et al. 2007; Falleri
et al. 2014). ChangeDistiller (Fluri et al. 2007) and GumTree (Falleri et al. 2014) are state-
of-the-art examples of such algorithms which produce edit scripts that detail the operations
to be performed on the nodes of a given AST in order to yield another AST corresponding
to the new version of the code. In particular, in this work, we selected the GumTree AST
differencing tool which has seen recently a momentum in the literature for computing edit
scripts. GumTree is claimed to build in a fast, scalable and accurate way the sequence of
AST edit actions (a.k.a edit scripts) between the two associated AST representations (the
buggy and fixed versions) of a given patch.

Consider the example edit script computed by GumTree for the patch of Closure-93 bug
from Defects4J illustrated in Fig. 7. The intended behaviour of the patch is to fix the wrong
variable declaration of indexOfDot due to a wrong method reference (lastIndexOf instead
of indexOf ) of java.lang.String object. GumTree edit script summarizes the change as an
update operation on an AST node simple name (i.e., an identifier other than a keyword) that
is modifying the identifier label (from indexOf to lastIndexOf ).

Although GumTree edit script is accurate in describing the bug fix operation at fine-
grained level, much of the contextual information describing the intended behaviour of
the patch is missing. The information regarding method invocation, the method name
(java.lang.String), the variable declaration fragment which assigns the value of the method
invocation to indexOfDot, as well as the type information (int for indexOfDot - cf. Fig. 6)
that is implied in the variable declaration statement are all missing in the GumTree edit
script. Since such contextual information is lost, the yielded edit script fails to convey the
full syntactic and semantic meaning of the code change.

Fig. 7 GumTree edit script corresponding to Closure-93 bug fix patch represented in Fig. 6
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GumTree edit action

Rich edit script

Compilation Unit

AST node

Fig. 8 Illustration of subtree extraction

To address this limitation, we propose to enrich GumTree-yielded edit scripts by retaining
more contextual information. To that end, we construct a specialized tree structure of the edit
scripts which captures the AST-level context of the code change. We refer to this specialized
tree structure as Rich Edit Script. A Rich Edit Script is computed as follows:

Given a patch, we start by computing the set of edit actions (edit script) using GumTree,
where the set contains an edit action for each contiguous group of code lines (hunks) that
are changed by a patch. In order to capture the context of the change, we re-organize edit
actions under new AST (minimal) subtrees building an AST hierarchy. For each edit action
in an edit script, we extract a minimal subtree from the original AST tree which has the
GumTree edit action as its leaf node, and one of the following predefined node types as
its root node: TypeDeclaration, FieldDeclaration, MethodDeclaration, SwitchCase, Catch-
Clause, ConstructorInvocation, SuperConstructorInvocation or any Statement node. The
objective is to limit the scope of context to the encompassing statement, instead of going
backwards until the compilation unit (cf. Fig. 2). We limit the scope of parent traversal
mainly for two reasons: first, the pattern mining must focus on the program context that is
relevant to the change; second, program repair approaches, which FixMiner is built for,
generally target statement-level fault localization and patch generation.

Consider the AST differencing tree presented in Fig. 8. From this diff tree, GumTree
yields the leaf nodes (gray) of edit actions as the final edit script. To build the Rich Edit
Script, we follow these steps:

i) For each GumTree-produced edit action, we remap it to the relevant node in the
program AST;

ii) Then, starting from the GumTree edit action nodes, we traverse the AST tree of the
parsed program from bottom to top until we reach a node of predefined root node type.

iii) For every predefined root node that is reached, we extract the AST subtree between
the discovered predefined root node down to the leaf nodes mapped to the GumTree
edit actions.

iv) Finally, we create an ordered3 sequence of these extracted AST subtrees and store it
as Rich Edit Script.

Concretely, with respect to our running example, consider the case of Closure-93 illus-
trated in Fig. 6. The construction of the Rich Edit Script starts by generating the
GumTree edit script (cf. Fig. 7) of the patch. The patch consists of a single hunk, thus we
expect to extract a single AST subtree, which is illustrated by Fig. 9. To extract this AST
subtree, first, we identify the node of the edit action “SimpleName” at position 4 in the AST

3The order of AST subtrees follows the order of hunks of the GNU diff format.
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Fig. 9 Excerpt AST of buggy code (Closure-93)

Tree of program. Then, starting from this node, we traverse backward the AST tree until we
reach the node “VariableDeclarationStatement” at position 1. We extract the AST subtree,
by creating a new tree, setting “VariableDeclarationStatement” as root node of the new tree,
and adding the intermediate nodes at positions 2,3 until we reach the corresponding node
of the edit action “UPD SimpleName” at position 4. We create a sequence, and add the
extracted AST subtree to the sequence.

Rich Edit Scripts are tree data structures. They are used to represent changes. In
order to provide tractable and reusable patterns as input to other APR systems, we define the
following string notation (cf. Grammar 1) based on syntactic rules governing the formation
of correct Rich Edit Script.

Figure 10 illustrates the computed Rich Edit Script. The first line indicates the
root node (no dashed line). ‘UPD ’ indicates the action type of the node, VariableDec-
larationStatement corresponds to ast node type of the node, tokens between ‘@@’ and
‘@TO@’ contains the corresponding code tokens before the change, where as tokens
between ‘@TO@’ and ‘@AT’ corresponding to new code tokens with the change. The three
dashed (- - -) lines indicate a child node. Immediate children nodes contain three dashes
while their children add another three dashes (- - - - - -) preserving the parent-child relation.

An edit action node carries the following three types of information: the AST node
type (Shape), the repair action (Action), the raw tokens (Token) in the patch. For
each of these three information types, we create separate tree representations from the
Rich Edit Script, named as ShapeTree, ActionTree and TokenTree, each carrying
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Fig. 10 Rich Edit Script for Closure-93 patch in Defects4J. ←↩ represents the carriage return
character which is necessary for presentation reasons

respectively the type of information indicated by its name. Figures 11, 12 and 13 show
ShapeTree, ActionTree, and TokenTree, respectively, generated for Closure-93.

3.4 Step 2 – search index construction

Definition 3 (Search Index) To reduce the effort of matching similar patches, a search index
(SI) is used to confine the comparison space. Each fold ({Shape, Action, Token}) defines a
search index: SIShape, SIAction, and SIT oken, respectively. Each is defined as SI∗ : Q∗ →
2RE , where Q is a query set specific to each fold and ∗ ∈ {Shape,Action, T oken}.

Given thatRich Edit Scripts are computed for each hunk in a patch, they are spread
inside and across different patches. A direct pairwise comparison of these Rich Edit
Scripts would lead to a combinatorial explosion of the comparison space. In order to
reduce this comparison space and enable a fast identification of Rich Edit Scripts
to compare, we build search indices. A search index is a set of comparison sub-spaces cre-
ated by grouping the Rich Edit Scripts with criteria that depend on the information
embedded the used tree representation (Shape, Action, Token) for the different iterations.

The search indices are built as follows:

“Shape” search index. The construction process takes the ShapeTree representations of
the Rich Edit Scripts produced by Step 1 as input, and groups them based on
their tree structure in terms of AST node types. Concretely, Rich Edit Scripts
having the same root node (e.g., IfStatement, MethodDeclaration, ReturnStatement) and
same depth are grouped together. For each group, we create a comparison space by
enumerating the pairwise combinations of the group members. Eventually, the “Shape”
search index is built by storing an identifier per group, denoted as root node/depth (e.g.,
IfStatement/2, IfStatement/3, MethodDeclaration/4), and a pointer to its comparison
space (i.e., the pairwise combinations of its members).

“Action” search index. The construction process follows the same principle as for
“Shape” search index, except that the regrouping is based on the clustering output

Fig. 11 ShapeTree of Closure-93
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Fig. 12 ActionTree of Closure-93

of ShapeTrees. Thus, the input is formed by ActionTree representations of the Rich
Edit Scripts and the group identifier for each comparison space is generated
as node/depth/ShapeTreeClusterId (e.g., IfStatement/2/1,MethodDeclaration/2/2) where
ShapeTreeClusterId represents the id of the cluster yielded by the clustering (Steps 3-
4) based on the ShapeTree information. Concretely, this means that the “Action” search
index is built on groups of trees having the same shape.

“Token” search index. The construction process follows the same principle as for
“Action” search index, using this time the clustering output of ActionTrees. Thus,
the input is formed by TokenTree representations of the Rich Edit Scripts
and the group identifier for each comparison space is generated as node/depth/Shape
TreeClusterId/ActionTreeClusterId (e.g., IfStatement/2/1/3,MethodDeclaration/2/2/1)
where ActionTreeClusterId represents the id of the cluster yielded by the clustering
(Steps 3-4) based on the ActionTree information.

3.5 Step 3 – tree comparison

Definition 4 (Pair of identical trees) Let a = (ri , rj ) ∈ Ridentical be a pair of Rich Edit
Script specialized tree representations if d(ri, rj ) = 0, where ri , rj ∈ RE and d is a
distance function. Ridentical is a subset of RE × RE.

The goal of tree comparison is to find identical tree representations of Rich Edit
Scripts for a given fold. There are several straightforward approaches for checking
whether two Rich Edit Scripts are identical. For example, syntactical equality could
be used. However, we aim at making FixMiner a flexible and extensible framework where
future research may tune threshold values for defining similar trees. Thus, we propose a
generic approach for comparing Rich Edit Scripts, taking into account the diversity
of information to compare for each specialized tree representation. To that end, we com-
pute tree edit distances for the three representations of Rich Edit Scripts separately.
The tree edit distance is defined as the sequence of edit actions that transform one tree into
another. When the edit distance is zero (i.e., no operation is necessary to transform one
tree to another) the trees are considered as identical. In Algorithm 1 we define the steps to
compare Rich Edit Scripts.

Fig. 13 TokenTree of Closure-93
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The algorithm starts by retrieving the identifiers from the search index SI corresponding
to the f old . An identifier is a pointer to a comparison sub-space that contains pairwise com-
binations of tree representation of Rich Edit Scripts to compare (cf. Section 3.4).
Concretely, we restore the Rich Edit Scripts of a given pair from the cache, and their
corresponding specialized tree representation according to the f old: At the first iteration,
we consider only trees denoted ShapeTrees, whereas in the second iteration we focus on
ActionTrees, and TokenTrees for the third iteration. We compute the edit distance between
the restored trees in two distinct ways.

– In the first two iterations (i.e, Shape and Action) we leverage again the edit script
algorithm of GumTree (Falleri , Section 3). We compute the edit distance by simply
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invoking GumTree on restored trees as input, given that Rich Edit Scripts are
indeed AST subtrees that are compatible with GumTree. Concretely, GumTree takes
the two AST trees as input, and generates a sequence of edit actions (a.k.a edit script)
that transform one tree into another, where the size of the edit script represents the edit
distance between the two trees.

– For the third iteration (i.e., Token), since the relevant information in the tree is text, we
use a text distance algorithm (Jaro-Winkler (Jaro 1989; Winkler 1990)) to compute the
edit distance between two tokens extracted from the trees. We use the implementation of
Jaro-Winkler edit distance from Apache Commons Text library4, which computes the
Jaro-Winkler edit distance of two strings dw as defined in Eq. 1. The equation consists
of two components; Jaro’s original algorithm (jsim) and Winkler’s extension(wsim).
The Jaro similarity is the weighted sum of percentage of matched characters c from each
file and transposed characters t . Winkler increased this measure for matching initial
characters, by using a prefix scale p that is is set to 0.1 by default, which gives more
favorable ratings to strings that match from the beginning for a set prefix length l. The
algorithm produces a similarity score (wsim) between 0.0 to 1.0, where 0.0 is the least
likely and 1.0 is a positive match. Finally, this similarity score is transformed to distance
(dw).

dw(s1, s2) = 1 − wsim(s1, s2)

wsim(s1, s2) = jsim(s1, s2) + l ∗ p(1 − jsim(s1, s2))

jsim(s1, s2) =
{

0 if c = 0;
1
3

(
c

|s1| + c
|s2| + c−t

c

)
otherwise.

l : The number of agreed characters at the beginning of two strings.

p : is a constant scaling factor for how much the score is adjusted upwards

for having common prefixes, which is set to 0.1 in Winkler’s work

(Winkler 1990). (1)

As the last step of comparison, we check the edit distance of the tree pair and tag the pairs
having the distance zero as identical pairs, since the distance zero implies that no operation
is necessary to transform one tree to another, or for the third fold (T oken) the tokens in the
tree are the same. Eventually, we store and save the set of identical tree pairs produced in
each iteration, which would be used in Step 4.

3.6 Step 4 – pattern inference

Definition 5 (Pattern) Let g be a graph in which nodes are elements of RE and edges are
defined by Ridentical.

g consists of a set of connected subgraphs SG (i.e., clusters of specialized tree
representations of Rich Edit Scripts) where sgi and sgj are disjoint ∀sgi,

sgj ∈ SG. A pattern is defined by sgi ∈ SG if sgi has at least two nodes (i.e., there are
recurrent trees).

Finally, to infer patterns, we resort to clustering of the specialized tree representations of
Rich Edit Scripts. First, we start by retrieving the set of identical tree pairs produced

4https://commons.apache.org/proper/commons-text/
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in Step 3 for each iteration. Following Algorithm 2, we extract the corresponding special-
ized tree representations according to the fold (i.e., ShapeTrees, ActionTrees, TokenTrees)
since the trees are identical only in a given fold. In order to find groups of trees that are
identical among themselves (i.e., clusters) we leverage graphs. Concretely, we implement
a clustering process based on the theory of connected components (i.e., subgraph) identifi-
cation in a graph (Skiena 1997). We create an undirected graph from the list of tree pairs,
where the nodes of the graph are the trees and the edges represent trees that are associated
(i.e., identical tree pairs). From this graph, we identify clusters as the subgraphs, where each
subgraph contains a group of trees that are identical among themselves and disjoint from
others.

A cluster contains a list of Rich Edit Scripts sharing a common specialized tree
representations according to the f old . Finally, a cluster is qualified as a pattern, when it has
at least two members.

The patterns for each f old are defined as follows:

Shape patterns The first iteration attempts to find patterns in the ShapeTrees associated to
developer patches. We refer to them as Shape patterns, since they represent the shape of the
changed code in a structure of the tree in terms of node types. Thus, they are not fix patterns
per se, but rather the context in which the changes are recurrent.
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Action patterns The second iteration considers samples associated to each shape pattern
and attempts to identify reoccurring repair actions from their ActionTrees. This step pro-
duces patterns that are relevant to program repair as they refer to recurrent code change
actions. Such patterns can indeed be matched to dissection studies performed in the lit-
erature (Sobreira et al. 2018). We will refer to Action patterns as the sought fix patterns.
Nevertheless, it is noteworthy that, in contrast with literature fix patterns, which can be
generically applied to any matching code context, our Action patterns are specifically
mapped to a code shape (i.e., a shape pattern) and is thus applicable to specific code con-
texts. This constrains the mutations to relevant code contexts, thus yielding more likely
precise fix operations.

Token patterns The third iteration finally considers samples associated to each action pat-
tern and attempts to identify more specific patterns with respect to the tokens available.
Such token-specific patterns, which include specific tokens, are not suitable for implemen-
tation into pattern-based automated program repair systems from the literature. We discuss
however their use in the context of deriving collateral evolutions (cf. Section 5.2).

4 Experimental evaluation

We now provide details on the experiments that we carry out for FixMiner. Notably, we
discuss the dataset, and present the implementation details. Then, we overview the statistics
on the mining steps, and eventually enumerate the research questions for the assessment of
FixMiner.

4.1 Dataset

We collect code changes from 44 large and popular open-source projects from Apache-
Commons, JBoss, Spring and Wildfly communities with the following selection criteria: we
focused on projects (1) written in Java, (2) with publicly available bug reports, (3) having at
least 20 source code files in at least one of its version; finally, to reduce selection bias, (4) we
choose projects from a wide range of categories - middleware, databases, data warehouses,
utilities, infrastructure. This is a process similar to Bench4bl (Lee et al. 2018). Table 2

details the number of bug fixing patches that we considered in each project. Eventually,
our dataset includes 11 416 patches.

4.2 Implementation choices

We recall that we have made the following parameter choices in the FixMiner workflow:

– The “Shape” search index considers only Rich Edit Scripts having a depth
greater than 1 (i.e., the AST sub-tree should include at least one parent and one child).

– Comparison of Rich Edit Scripts is designed to retrieve identical trees (i.e., tree
edit distance is 0).

4.3 Statistics

FixMiner is a pattern mining approach to produce fix patterns for program repair systems.
Its evaluation (cf. Section 5) will focus on evaluating the relevance of the yielded patterns.
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Table 2 Dataset

Community Project # Patches Project # Patches

Apache camel 1366 commons codec 11

commons collections 56 commons compress 73

commons configuration 89 commons crypto 9

commons csv 18 common io 58

hbase 2169 hive 2641

JBoss entesb 15 jbmeta 14

Spring amqp 89 android 5

batch 224 batchadm 11

datacmns 151 datagraph 19

datajpa 112 datamongo 190

dataredis 65 datarest 91

ldap 26 mobile 11

roo 414 sec 304

secoauth 66 sgf 35

shdp 35 shl 11

social 14 socialfb 12

socialli 2 socialtw 9

spr 1098 swf 84

sws 101

Wildfly ely 217 swarm 131

wfarq 8 wfcore 547

wfly 802 wfmp 13

Total 11416

Nevertheless, we provide statistics on the mining process to provide a basis of discussion
on the implications of FixMiner’s design choices.

Search indices FixMiner mines fix patterns through comparison of hunks (i.e., contigu-
ous groups of code lines). 11 416 patches in our database are eventually associated to 41 823
hunks. A direct pairwise comparison of these hunks would lead to 874 560 753 tree compar-
ison computations. The combinatorial explosion of the comparison space is overcome by
building search indices as previously described in Section 3.4. Table 3 shows the details on
the search indices built for each fold in the FixMiner iterations. From the 874+ million
tree pairs to be compared (i.e., C2

41823), the construction of the Shape index (implements
criteria on the tree structure to focus on comparable trees) lead to 670 relevant compari-
son sub-spaces yielding a total of only 12+ million tree comparison pairs. This represents a
reduction of 98% of the comparison space. Similarly, the Action index and the Token index
reduce the associated comparison spaces by 88% and 72% respectively.

Clusters We infer patterns by considering recurrence of trees: the clustering process groups
together only tree pairs that are identical among themselves. Table 4 overviews the statistics
of clusters yielded for the different iterations: Shape patterns (which represent code con-
texts) are the most diverse. Action patterns (which represent fix patterns that are suitable
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Table 3 Comparison space
reduction Search index # of hunks # comparison # tree comparison

(in fold) sub-spaces pairs

Shape 41 823 670 12 601 712

Action 25 290 2 457 1 427 504

Token 6759 411 401 980

as inputs for program repair systems) are substantially less numerous. Finally, Token pat-
terns (which may be codebase-specific) are significantly fewer. We recall that we consider
all possible clusters as long as it includes at least 2 elements. A practitioner may however
decide to select only large clusters (i.e., based on a threshold).

Because FixMiner considers code hunks as the unit for building Rich Edit
Scripts, a given pattern may represent a repeating context (i.e., Shape pattern) or change
(i.e., Action or Token pattern) that is only part of the patch (i.e., this patch includes other
change patterns) or that is the full patch (i.e., the whole patch is made of this change pattern).
Table 5 provides statistics on partial and full patterns. The numbers represent the disjoint
sets of patterns that can be identified as always full or as always partial. Patterns that may be
full for a given patch but partial for another patch are not considered. Overall, the statistics
indicate that, from our dataset of over 40 thousand code hunks, only a few (e.g., respectively
278 and 7 120 hunks) are associated with patterns that are always full or always partial
respectively. In the remaining cases, the pattern is associated to a code hunk that may form
alone the patch or may be tangled with other code. This suggests that FixMiner is able to
cope with tangled changes during pattern mining.

Similarly, we investigate how the patterns are spread among patches. Indeed, a pattern
may be found because a given patch has made the same change in several code hunks. We
refer to such pattern as vertical. In contrast, a pattern may be found because the same code
change is spread across several patches. We refer to such pattern as horizontal. Table 6
shows that vertical and horizontal patterns occur in similar proportions for Shape and Action
patterns. However, Token patterns are significantly more vertical than horizontal (65 vs
224). This is in line with studies of collateral evolutions in Linux, which highlight large
patches making repetitive changes in several locations at once (Padioleau et al. 2008) (i.e.,
collateral evolutions are applied through vertical patches).

4.4 Research questions

The assessment experiments are performed with the objective of investigating the useful-
ness of the patterns mined by FixMiner. To that end, we focus on the following research
questions (RQs):

Table 4 Statistics on clusters
Pattern # trees # corresponding # Clusters

(clustering input) change hunks

Shape 1 370 406 25 290 2947

Action 628 531 6 759 428

Token 18 471 1 562 326
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Table 5 Statistics on Full vs
Partial patterns Partial patterns Full patterns

# Patterns # Patch # Hunk # Patterns # Patch # Hunk

Shape 1358 3140 7120 120 223 278

Action 124 554 1153 10 20 25

Token 75 148 277 14 22 32

RQ-1 Is automated patch clustering of FixMiner consistent with human manual
dissection?

RQ-2 Are patterns inferred by FixMiner compatible with known fix patterns?
RQ-3 Are the mined patterns effective for automated program repair?

5 Results

5.1 RQ1: Comparison of FixMiner clustering against manual dissection

Objective. We propose to assess relevance of the clusters yielded by FixMiner in terms
of whether they represent patterns which practitioners would view as recurrent changes
that are indeed relevant to the patch behaviour. In previous section, the statistics showed
that several changes are recurrent and are mapped to FixMiner’s clusters. In this RQ,
we validate whether they are relevant to the practitioner’s viewpoint. For example, if
FixMiner was not leveraging AST information, removal of blank lines would have
been seen as a recurrent change (hence a pattern); however, a practitioner would not
consider it as relevant.

Protocol. We consider an oracle dataset of patches with change patterns that are labelled
by humans. Then we associate each of these patches to the relevant clusters mined by
FixMiner on our combined study datasets. This way, we ensure that the clustering does
not overfit to the oracle dataset labelled by humans. Eventually, we check whether each
set of patches (from the oracle dataset) that are associated to a given FixMiner cluster,
consists of patches having the same labels (from the oracle).

Oracle. For our experiments, we leverage the manual dissection of Defects4J (Just et al.
2014) provided by Sobreira et. al (2018).

This oracle dataset associates the developer patches of 395 bugs in the Defects4J
datasets with 26 repair pattern labels (one of which is being “Not classified”).

Table 6 Statistics on pattern
spread Vertical Horizontal

# Patterns # Patch # Hunk # Patterns # Patch # Hunk

Shape 881 881 2432 1194 3808 3808

Action 148 148 488 132 574 574

Token 224 224 709 65 170 170

*A pattern can simultaneously be
vertical (when it is associated to
several changes in hunks of the
same patch) and horizontal
(when it appears as well within
other patches)

Empirical Software Engineering (2020) 25:1980–20242000



Table 7 Proportion of shared
patterns between our study
dataset and Defects4J

Study dataset Defects4J

# corresponding # Patterns # corresponding # Patterns

hunks hunks

Shape 25272 2947 479 214

Action 6755 428 103 37

Token 1562 326 23 13

Results. Table 7 provides statistics that describe the proportion5 of FixMiner’s patterns
that can be associated to change patterns in the Defects4J patches.

Diversity We check the number of patterns that can be found in our study dataset and
Defects4J. In absolute numbers, Defects4J patches include a limited set of change patterns
(i.e., ∼ 7% = 214

2947 ) in comparison to what can be found in our study dataset.

Consistency We check for consistency of FixMiner’s pattern mining by assessing
whether all Defects4J patches associated to a FixMiner cluster are indeed sharing a
common dissection pattern label. We have found that the clustering to be consistent for
∼ 78% = 166

214 , ∼ 73% = 27
37 and ∼ 92% = 12

13 of Shape, Action and Token clusters
respectively.

Granularity The human dissection provides repair pattern labels for a given patch.
Nonetheless, the label is not specifically associated to any of the various changes in the
patch. FixMiner however yields patterns for code hunks. Thus, while FixMiner links a
given hunk to a single pattern, the dissection data associates several patterns to a given patch.
We investigate the granularity level with respect to human-provided patterns. Concretely,
several patterns of FixMiner can actually be associated (based on the corresponding
Defects4J patches) to a single human dissection pattern. Consider the example cases in
Table 8. Both patches consist of nested InfixExpression under the IfStatement. The first
FixMiner pattern indicates that the change operation (i.e., update operator) should be
performed on the children InfixExpression. On the other hand, the second pattern implies
a change operation in the parent InfixExpression. Thus, eventually, FixMiner patterns
are finer-grained and associates the example patches to two distinct patterns each point-
ing the precise node to update, while manual dissection considers them under the same
coarse-grained repair pattern.

We have investigated the differences between FixMiner patterns and dissection
labels and found several granularity mismatches similar to the previous example:
condBlockRetAdd (condition block addition with return statement) from manual dis-
section is associated to 14 fine-grained Shape patterns of FixMiner: this suggests that the

5In this experiment, we excluded 34 patches from Defects4J dataset which affect more than 1 file.
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Table 8 Granularity example to FixMiner mined patterns

Pattern Example patch from

FixMiner dataset

FixMiner

Dissection Logic expression modification

(Sobreira et al. 2018) Single Line

FixMiner

Dissection Logic expression modification

(Sobreira et al. 2018) Single Line

repair-potential of this pattern could be further refined depending on the code context. Sim-
ilarly, expLogicMod (logic expression modification), is associated to 2 separate Action
patterns (see Table 8) of FixMiner: this suggests that the application of this repair pattern
can be further specialized to reduce the repair search space and the false positives.

Overall, we found in total 37, 3 and 1 dissection repair patterns are further refined into
several FixMiner’s Shape, Action and Token patterns respectively.

Assessment of FixMiner’s patterns with respect to associated bug reports Beyond
assessing the consistency of FixMiner’s patterns based on human-built oracle dataset
of labels, we further propose to investigate the relevance of the patterns in terms of the
semantics that can be associated to the intention of the changes. To that end, we consider bug
reports associated to patches as a proxy to characterize the intention of the code changes. We
expect bug reports sharing textual similarity to be addressed by patches that are syntactically
similar. This hypothesis drives the entire research direction on Information retrieval-based
bug localization (Lee et al. 2018).

Figure 14 provides the distribution of pairwise bug report (textual) similarity values for
the bug reports corresponding to patches associated to each cluster. For clear presentation,
we focus on the top-20 clusters (in terms of size). We use TF-IDF to represent each bug
report as a vector, and leverage Cosine similarity to compute similarity scores among vec-
tors. The represented boxplots display all pairwise bug report similarity values, including
outliers. Although for Shape and Action patterns the similarities are near 0 for all clusters,
we note that there are fewer outliers for Action patterns. This suggests a relative increase in
the similarity among bug reports. As expected, similarity among bug reports is the highest
with Token patterns.
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Fig. 14 Distribution of pairwise bug report similarity. Note: A red line represents an average similarity for
all bug reports in fold, and blue line represents average similarity bug reports within a cluster

5.2 RQ2: Compatibility between FixMiner’s patterns and APR literature patterns

Objective. Given that FixMiner aims to automatically produce fix patterns that can be
used by automated program systems, we propose to assess whether the yielded patterns
are compatible with patterns in the literature.

Protocol. We consider the set of patterns used by literature APR systems and com-
pare them against FixMiner’s patterns. Concretely, we systematically try to map
FixMiner’s patterns with patterns in the literature. To that end, we rely on the compre-
hensive taxonomy of fix patterns proposed by Liu et al. (2019): if a given FixMiner
pattern can be mapped to a type of change in the taxonomy, then this pattern is marked
as compatible with patterns in the literature.

Recall that, as described earlier, fix patterns used by APR tools abstract changes
at the form of FixMiner’s Action patterns (Section 3 - Step 4). In the absence of
common language for specifying patterns, the comparison is performed manually. For
the comparison, we do not conduct exact mapping between literature patterns and the
ones yielded by FixMiner as fix patterns yielded by FixMiner have more context
information. We rather consider whether the context information yielded by FixMiner
patterns matches with the context of literature patterns. We discuss the related threats
to validity in Section 6. Given that the assessment is manual and thus time-consuming,
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Table 9 Example FixMiner fix-patterns associated to APR literature patterns

Patterns enumerated by Liu et al. (2019) Example fix pattern from FixMiner (*)

FP2. Insert Null Pointer Checker INS IfStatement

— INS InfixExpression

—— INS SimpleName

—— INS Operator

—— INS NullLiteral

— INS ReturnStatement

—— INS NullLiteral

FP4. Insert Missed Statement INS ExpressionStatement

—INS MethodInvocation

——INS SimpleName

FP7. Mutate Data Type UPD CatchClause

— UPD SingleVariableDeclaration

—— UPD SimpleType

FP9. Mutate Literal Expression UPD FieldDeclaration

— UPD VariableDeclarationFragment

—— UPD StringLiteral

FP10. Mutate Method Invocation Expression UPD ExpressionStatement

— UPD MethodInvocation

—— UPD SimpleName

——— INS SimpleName

FP11. Mutate Operators UPD IfStatement

— UPD InfixExpression

—— UPD Operator

FP12. Mutate Return Statement UPD ReturnStatement

— UPD MethodInvocation

—— UPD SimpleName

we limit the comparisons to the top 50 patterns (i.e., Action patterns) yielded by
FixMiner.

Oracle. We build on the patterns enumerated by Liu et al. (2019) who systematically
reviewed fix patterns used by Java APR systems in the literature. They summarised 35 fix
patterns in GNU format, which we refer to for comparing against FixMiner patterns.

Results. Overall, among the 35 fix patterns used by the total of 11 studied APR sys-
tems, 16 patterns are also included in the fix patterns (i.e., Action patterns) yielded
by FixMiner when mining our study dataset. We recall that these patterns are often
manually inferred and specified by researchers for their APR tools. Table 9 illustrates

Table 10 Compatibility of patterns: FixMiner vs Literature patterns

PAR HDRepair ssFix ELIXIR S3 NPEfix SketchFix SOFix Genesis CapGen SimFix AVATAR

7/16 7/12 6/34 8/11 3/4 1/9 5/6 9/12 1/108 12/30 8/16 6/13

We provide x/y numbers: x is the number of fix patterns in the corresponding APR tool that are mined by
FixMiner; y is the number of fix patterns used by the corresponding APR tool
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examples of FixMiner’s fix patterns associated to some of the patterns used in liter-
ature. We note that fix patterns identified by FixMiner are specific (e.g., for FP4:
Insert Missed Statement, the corresponding FixMiner’s fix pattern specifies
which type of statement must be inserted).

Table 10 illustrates the proportion of FixMiner’s patterns that are compatible with
patterns in the literature. In this comparison, we select the top-50 fix patterns yielded by
FixMiner and verify their presence within the fix patterns used in the APR systems.

We observed that

– 7 patterns are compatible with fix patterns that are mined manually from bug fix patches
(i.e., fix patterns in PAR (Kim et al. 2013)).

– between 1 and 8 patterns are compatible with researcher-predefined fix patterns used
in ssFix (Xin and Reiss 2017), ELIXIR (Saha et al. 2017), S3 (Le et al. 2017),
NEPfix (Durieux et al. 2017), and SketchFix (Hua et al. 2018), respectively.

– 7 patterns are compatible with fix pattern mined from history bug fixes by
HDRepair (Le et al. 2016a), 9 patterns are compatible with fix patterns mined from
StackOverflow by SOFix (Liu and Zhong 2018), and 1 fix pattern is compatible with 1
fix pattern mined by Genesis (Long et al. 2017) that focuses on mining fix patterns for
three kinds of bugs.

– 12 and 8 patterns are compatible with the patterns used by CapGen (Wen et al. 2018)
and SimFix (Jiang et al. 2018), respectively, which extract patterns in a statistic way
similar to the empirical studies of bug fixes (Martinez and Monperrus 2015; Liu et al.
2018b).

– 6 patterns are compatible with the fix patterns used in AVATAR (Liu et al. 2019), which
are presented in a study for inferring fix patterns from FindBugs(Hovemeyer and Pugh
2004) static analysis violations (Liu et al. 2018a).

Manual (but Systematic) Assessment of Token patterns Action and Token patterns are
the two types of patterns that relate to code changes. In the assessment scenario above, we
only considered Action patterns since they are the most appropriate for comparison with
the literature patterns. We now focus on Token patterns to assess whether our hypothesis on
their usefulness for deriving collateral evolutions holds (cf. Section 3 - Step 4). To that end,
we consider the various Token clusters yielded by FixMiner and manually verify whether
the recurrent change (i.e., the pattern) is relevant (i.e., a human can explain whether the
intentions of the changes are the same). Eventually, if the pattern is validated, it should be

Table 11 Example changes associated to FixMiner mined patterns

Semantic Behaviour of Pattern Example change in developer patch

Missing field modifier

Wrong Log level
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Fig. 15 Example SmPL patch
corresponding to generic
representation of the pattern
associated to FixMiner pattern

presented as a generic/semantic patch (Padioleau et al. 2008; Andersen and Lawall 2010)
written in SmPL.6

In Table 11, we list some of the patches that we found to be relevant. Among the top 50
Token patterns investigated, 12 patterns correspond to a modifier change, 4 patterns target
changes in logging methods, and 1 pattern is about fixing the infix operator (e.g., > → >=).
The remaining cases mainly focus on changes that complete the implementation of code
finally block logic (e.g., missing call to closeAll for opened files), changes in Exception
handling, updates to wrong parameters passed to method invocations, as well as wrong
method invocations. As mentioned earlier, these patterns are spread mostly vertically (i.e.
change is recurrent in several code hunks of a given patch) and the semantic behaviour of
these patterns are specific to project nature.

Overall, our manual investigations on the top 50 Token patterns confirm that many of the
recurrent changes associated to specific tokens are indeed relevant. We even found several
cases where collateral evolution changes are regrouped to form a pattern as exhibited by
the corresponding pattern example presented in Fig. 15. In this example, we illustrate the
pattern using the SmPL specification language, which was designed for specifying collateral
evolutions. This finding suggests that FixMiner can be leveraged to systematically mined
collateral evolutions in the form of Token patterns which could be automatically rewritten
as semantic patches in SmPL format. This endeavour is however out of the scope of this
paper, and will be investigated in future work.

5.3 RQ3: Evaluation of Fix Patterns’ Relevance for APR

Objective. We propose to assess whether fix patterns yielded by FixMiner are effective
for automated program repair.

Protocol. We implement a prototype APR system that uses the fix patterns mined by
FixMiner to generate patches for bugs by following the principles of the PAR (Kim
et al. 2013), which is referred to as PARFixMiner in the remainder of this paper. In
contrast with PAR where the templates were engineered by a manual investigation of
example bug fixes, in PARFixMiner, the templates for repair are engineered based on fix
patterns mined by FixMiner. Figure 16 overviews the workflow of PARFixMiner.

Fault Localization. PARFixMiner uses spectrum-based fault localization. We use the
GZoltar7 (Campos et al. 2012) dynamic testing framework and leverage Ochiai (Abreu
et al. 2007) ranking metric to predict buggy statements based on execution coverage
information of passing and failing test cases. This setting is widely used in the repair
community (Martinez and Monperrus 2016; Xiong et al. 2017; Xin and Reiss 2017; Wen

6Semantic Patch Language
7We used GZoltar version 0.1.1

Empirical Software Engineering (2020) 25:1980–20242006



Patch

Candidate

Patch
Generation

Patch
Validation

Pattern
Matching

Suspicious 

Code

Locations

Buggy

Program

Fault
Localization

Fix patterns

Test 

Suite

Patch 

s

Fig. 16 The overall workflow of PARFixMiner program repair pipeline

et al. 2018; Liu et al. 2018), allowing for comparable assessment of PARFixMiner against
the state-of-the-art.

Pattern Matching and Patch Generation. Once the spectrum-based fault localization (or
ir-based fault localization (Koyuncu et al. 2019; Wen et al. 2016)) process yields a list of
suspicious code locations, PARFixMiner attempts to select fix patterns for each statement
in the list. The selection of fix patterns is conducted by matching the context information
of suspicious code locations and fix patterns mined by FixMiner. Concretely, first, we
parse the suspicious statement and traverse each node of its AST from its first child node
to its last leaf node and form an AST subtree to represent its context. Then, we try to
match the context (i.e., shape) of the AST subtree (from a suspicious statement) to the
fix patterns’ shapes.

If a matching fix pattern is found, we proceed with the generation of a patch candidate.
Some fix patterns require donor code (i.e., source code extracted from the buggy program)
to generate patch candidates with fix patterns. These are also often referred to as part of
fix ingredients. Recall that, to integrate with repair tools, we leverage FixMiner Action
patterns, which do not contain any code token information: they have “holes”. Thus we
search the donor code locally from the file which contains the suspicious statement. We
select relevant donor code among the ones that are applicable to the fix pattern and the
suspicious statement (i.e., data type(s) of variable(s), expression types, etc. that are matching
to the context) to reduce the search space of donor code and further limit the generation of
nonsensical patch candidates. For example, the fix pattern in Fig. 17 can only be matched to
a suspicious return statement that has a method invocation expression: thus, the suspicious
return statement will be patched by replacing its method name with another one (i.e., donor
code). The donor code is searched by identifying all method names from the suspicious
file having the same return type and parameters with the suspicious statement. Finally, a
patch candidate is generated by mutating suspicious statements with identified donor code
following the actions indicated in the matched fix pattern. We generate as many patches as
the number of identified pieces of donor code. Patches are generated consecutively in the
order of matching within the AST.

Note: We remind the reader that in this study, we do not perform a specific patch priori-
tization strategy. We search donor code from the AST tree of the local file that contains the

Fig. 17 Example of fix patterns yielded by FixMiner
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Table 12 Details of the
benchmark Project Bugs LOC Tests

JFreechart (Chart, C) 26 96K 2,205

Apache commons-lang (Lang, L) 65 22K 2,245

Apache commons-math (Math, M) 106 85K 3,602

Joda-Time (Time, T) 27 28K 4,130

Closure compiler (Closure, Cl) 133 90K 7,927

Total 357 321K 20,109

† In the table, column “Bugs”
denotes the total number of bugs
in Defects4J benchmark, column
“LOC” denotes the number of
thousands of lines of code, and
column “Tests” denotes the total
number of test cases for each
project

suspicious statement by traversing each node of the AST of the local file from its first child
node to its last leaf node in a breadth-first strategy (i.e., left-to-right and top-to-bottom). In
case of multiple donor code options for a given fix pattern, the candidate patches are gen-
erated (each with a specific donor code) following the positions of donor codes in the AST
tree (of the local file which contains the suspicious statement).

Pattern Validation. Once a patch candidate is generated, it is applied to buggy program
and will be validated against the test suite. If it can make the buggy program pass
all test cases successfully, the patch candidate will be considered as a plausible patch
and PARFixMiner stops trying other patch candidates for this bug. Otherwise, the pat-
tern matching and patch generation steps are repeated until the entire suspicious code
locations list is processed. Specifically, we consider only the first generated plausible
patch for each bug to evaluate its correctness. For all plausible patches generated by
PARFixMiner, we further manually check the equivalence between these patches and the
oracle patch provided in Defects4J. If they are semantically similar to the developer-
provided fix, we consider they as correct patches, otherwise remain as plausible.

Oracle. We use Defects4J8 (Just et al. 2014) dataset which is widely used as a bench-
mark for Java-targeted APR research (Martinez and Monperrus 2016; Le et al. 2016a;
Chen et al. 2017; Martinez et al. 2017). The dataset contains 357 bugs with their corre-
sponding developer fixes and test cases covering the bugs. Table 12 details statistics on
the benchmark.

Results. Overall, we implemented the 31 fix patterns (i.e., Action patterns) mined by
FixMiner, focusing only on the top-50 clusters (in terms of size).

We compare the performance of PARFixMiner against 13 state-of-the-art APR tools
which have also used Defects4J benchmark for evaluating their repair performance. Table 13
illustrates the comparative results in terms of numbers of plausible (i.e., that passes all
the test cases) and correct (i.e., that is eventually manually validated as semantically
similar to the developer-provided fix) patches. Note that although HDRepair manuscript
counts 23 bugs for which “correct” fixes are generated (and among which a correct fix is
ranked number one for 13 bugs), the authors labeled fixes as “verified ok” for only 6 bugs
(see artefact page9). We consider these 6 bugs in our comparison.

Overall, we find that PARFixMiner successfully repaired 26 bugs from the Defects4J
benchmark by generating correct patches. This performance is only surpassed to date by
SimFix (Jiang et al. 2018) that was concurrently developed with PARFixMiner.

8Version 1.2.0 - https://github.com/rjust/defects4j/releases/tag/v1.2.0
9https://github.com/xuanbachle/bugfixes/blob/master/fixed.txt
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Nevertheless, while these tools generate more correct patches than PARFixMiner, they
also generate many more plausible patches which are however not correct. In order to
comparatively assess the different tools, we resort to a Precision metric (P), which is the
probability of correctness of the generated patches. P(%) is defined as the ratio of the num-
ber of bugs for which a correct fix is generated first (i.e., before any other plausible patch)
against the number of bugs for which a plausible (but incorrect) patch is generated first.
For example, 81% of PARFixMiner’s plausible patches are actually correct, while it is the
case for 63% and 60% of respectively ELIXIR and SimFix plausible patches are correct.
To date only CapGen (Wen et al. 2018) achieves similar performance at yielding patches
with slighter higher probability (at 84%) to be correct. The high performance of Cap-
Gen confirms their intuition that context-awareness, which we provide with Rich Edit
Script, is essential for improving patch correctness.

Table 14 enumerates 128 bugs that are currently fixed (both correct and plausible) in
the literature. 89 of them can be correctly fixed by at least one APR tool. PARFixMiner

generates correct patches for 26 bugs. Among the bugs in the used version of Defects4J
benchmark, 267 bugs have not yet been fixed by any tools in the literature, which still is a
big challenge for automated program repair research.

Finally, we find that, thanks to its automatically mined patterns, PARFixMiner is able to
fix six (6) bugs which have not been fixed by any state-of-the-art APR tools (cf. Fig. 18).

6 Discussions and threats to validity

Runtime performance To run the experiments withFixMiner, we leveraged a computing
system with 24 Intel Xeon E5-2680 v3 cores with 2.GHz per core and 3TB RAM. The con-
struction of the Rich Edit Scripts took about 17 minutes. Rich Edit Scripts
are cached in memory to reduce disk access during the computation of identical trees.
Nevertheless, we recorded that comparing 1 108 060 pairs of trees took about 18 minutes.

Threats to external validity The selection of our bug-fix datasets carries some threats to
external validity that we have limited by considering known projects, and heuristics used in
previous studies. We also make our best effort to link commits with bug reports as tagged
by developers. Some false positives may be included if one considers a strict and formal
definition of what constitutes a bug.

Threats to construct validity arise when checking the compatibility of FixMiner’s pat-
terns against the patterns used by literature APR systems. Indeed, for the comparison, we
do not conduct exact mapping where the elements should be the same, given that literature
patterns can be more abstract than the ones yielded by FixMiner. For example, Modify
Method Name (i.e., FP10.1) is a sub-fix pattern of Mutate Method Invocation Expression
(i.e., FP10), which is about replacing the method name of a method invocation expression
with another appropriate method name (Liu et al. 2019). This fix pattern can be matched to

Empirical Software Engineering (2020) 25:1980–20242010
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Fig. 18 Overlap of the correct
patches by PARFixMiner and
other APR tools

any statement that contains a method name under method invocation expression. However,
in this paper, the similar fix patterns yielded by FixMiner have more context informa-
tion. Therefore, we consider context information to check the compatibility of FixMiner’s
patterns against the patterns used by literature APR systems. For example, the fix pattern
shown in Fig. 17 is to modify the buggy method name of a method invocation expres-
sion with another appropriate method name which is inside a Return-Statement.
As the context information refers to a Return-Statement the fix pattern shown
in Fig. 17 considered as compatible with Mutate Return Statement (i.e., FP12.). Nev-
ertheless, the mapping is conservative in the sense that we consider that a FixMiner
pattern matches a pattern from the literature as long as it can fit with the literature
pattern.

7 Related work

Automated program repair Patch generation is one of the key tasks in software mainte-
nance since it is time-consuming and tedious. If this task is automated, the cost and time of
developers for maintenance will be dramatically reduced. To address the issue, many auto-
mated techniques have been proposed for program repair (Monperrus 2018). GenProg (Le
Goues et al. 2012b), which leverages genetic programming, is a pioneering work on program
repair. It relies on mutation operators that insert, replace, or delete code elements. Although
these mutations can create a limited number of variants, GenProg could fix several bugs (in
their evaluation, test cases were passed for 55 out of 105 real program bugs) automatically,
although most of them have been found to be incorrect patches later. PACHIKA (Dallmeier
et al. 2009) leverages object behavior models. SYDIT (Meng et al. 2011) and LASE (Meng
et al. 2013) automatically extracts an edit script from a program change. While several
techniques have focused on fixability, Kim et al. (Kim et al. 2013) pointed out that patch
acceptability should be considered as well in program repair. Automatically generated
patches often have nonsensical structures and logic even though those patches can fix pro-
gram bugs with respect to program behavior (i.e., w.r.t. test cases). To address this issue, they
proposed PAR, which leverages manually-crafted fix patterns. Similarly Long and Rinard
proposed Prophet (Long and Rinard 2016) and Genesis (Long et al. 2017) which gener-
ates patches by leveraging fix patterns extracted from the history of changes in repositories.
Recently, several approaches (Bhatia and Singh 2016; Gupta et al. 2017) leveraging deep
learning have been proposed for learning to fix bugs. Even recent APR approaches that tar-
get bug reports rely on fix templates to generate patches. iFixR (Koyuncu et al. 2019) is such
an example which builds on top of the templates built TBar (Liu et al. 2019) templates. Over-
all, we note that the community is going in the direction of implementing repair strategies
based on fix patterns or templates. Our work is thus essential in this direction as it pro-
vides a scalable, accurate and actionable tool to mine such relevant patterns for automated
program repair.

Empirical Software Engineering (2020) 25:1980–20242014



Code differencing Code differencing is an important research and practice concern in
software engineering. Although commonly used by human developers in manual tasks,
differencing at the text line level granularity (Myers 1986) is generally unsuitable for
automated analysis of changes and the associated semantics. AST differencing work has
benefited in the last decade for the extensive investigations that the research community has
performed for general tree differencing (Bille 2005; Chawathe et al. 1996; Chilowicz et al.
2009; Al-Ekram et al. 2005). ChangeDistiller (Fluri et al. 2007) and GumTree (Falleri et al.
2014) constitute the current state-of-the-art for AST differencing in Java. In this work, we
have selected GumTree as the base tool for the computation of edit scripts as its results have
been validated by humans, and it has been shown to be more accurate and fine-grained edit
scripts. Nevertheless, we have further enhanced the edit script yielding an algorithm that
keeps track of contextual information. Our approach echoes a recently published work by
Huang et al. (2018): their CLDIFF tool similarly enriches the AST produced by GumTree
to enable the generation of concise code differences. The tool however was not available
at the time of our experiments. Thus, to satisfy the input requirements of our fix pattern
mining approach, we implement Rich Edit Script, to enrich GumTree-yielded edit
scripts by retaining more contextual information.

Change patterns The literature includes a large body of work on mining change patterns.

Mining-based approaches In recent years, several approaches have built upon the idea of
mining patterns or leveraging templates. Fluri et al., based on edit scripts computed by their
ChangeDistiller AST difference, have used hierarchical clustering to discover unknown
change types in three Java applications (Fluri et al. 2008). They have limited themselves
however to considering only changes implementing the 41 basic change types that they had
previously identified (Fluri and Gall 2006). Kreutzer et al. have developed C3 to automati-
cally detect groups of similar code changes in code repositories with the help of clustering
algorithms (Kreutzer et al. 2016). Martinez and Monperrus (2015) assessed the relation-
ship between the types of bug fixes and automatic program repair. They perform extensive
large scale empirical investigations on the nature of human bug fixes based on fine-grained
abstract syntax tree differences by ChangeDistiller. Their experiments show that the mined
models are more effective for driving the search compared to random search. Their mod-
els however remain at a high level and may not carry any actionable patterns to be used by
other template-based APR. Our work however also targets systematizing and automating
the ”mining of actionable fix patterns” to feed pattern-based program repair tools.

An example application is related to work by Livshits and Zimmermann (2005) who
discovered application-specific repair templates by using association rule mining on two
Java projects. More recently, Hanam et al. (2016) have developed the BugAID technique
for discovering most prevalent repair templates in JavaScript. They use AST differencing
and unsupervised learning algorithms. Our objective is similar to theirs, focusing on Java
programs with different abstraction levels of the patterns. FixMiner builds on a three-fold
clustering strategy where we iteratively discover recurrent changes preserving surrounding
code context.

Studies on code change redundancies A number of empirical studies have confirmed that
code changes are repeatedly performed in software code bases (Kim and Notkin 2009; Kim
et al. 2006; Molderez et al. 2017; Yue et al. 2017). Same changes are prevalent because mul-
tiple occurrences of the same bug require the same change. Similarly, when an API evolves,
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or when migrating to a new library/framework, all calling code must be adapted by same
collateral changes (Padioleau et al. 2008). Finally, code refactoring or routine code cleaning
can lead to similar changes. In a manual investigation, Pan et al. (2009) have identified 27
extractable repair templates for Java software. Among other findings, they observed that if-
condition changes are the most frequently applied to fix bugs. Their study, however, does not
discuss whether most bugs are related to If-condition or not. This is important as it clarifies
the context to perform if-related changes. Recently, Nguyen et al. (2010) have empirically
found that 17-45% of bug fixes are recurring. Our focus in this paper is to provide tool-
support automated approach to inferring change patterns in a dataset to drive repair patterns
to guide APR mutation. Moreover, our patterns are less generic than the ones in previous
works (e.g., as in Pan et al. (2009) and Nguyen et al. (2010)).

Concurrently to our work, Jiang et al. have proposed SimFix (Jiang et al. 2018), and
Wen et al. CapGen (2018) which implements a similar idea of leveraging code redundancies
using contextual information for shaping the program repair space. In FixMiner however,
the pattern mining phase is independent from the patch generation phase, and the resulting
patterns are tractable and reusable as input to other APR systems.

Generic and semantic patch inference Ideally, FixMiner is a tool that aims at perform-
ing towards finding a generic patch that can be leveraged by automated program repair
to correctly update a collection of buggy code fragments. This problem has been recently
studied by approaches such as spdiff (Andersen and Lawall 2010; Andersen et al. 2012)
which work on the inference of generic and semantic patches. This approach, however, is
known to be poorly scalable and has constraints of producing ready-to-use semantic patches
that can be used by the Coccinelle matching and transformation engine (Brunel et al. 2009).
There have however a number of prior work that tries to detect and summarize program
changes. A seminal work by Chawathe et al. describes a method to detect changes to struc-
tured information based on an ordered tree and its updated version (Chawathe et al. 1996).
The goal was to derive a compact description of the changes with the notion of minimum
cost edit script which has been used in the recent ChangeDistiller and GumTree tools. The
representations of edit operations, however, are either often too overfit to a particular code
change or abstract very loosely the change so that it cannot be easily instantiated. Neamtiu
et al. (2005) proposed an approach for identifying changes, additions and deletions of C pro-
gram elements based on structural matching of syntax trees. Two trees that are structurally
identical but have differences in their nodes are considered to represent matching program
fragments. Kim et al. (2007) have later proposed a method to infer “change-rules” that cap-
ture many changes. They generally express changes related to program headers (method
headers, class names, package names, etc.). Weissgerber et al. (2006) have also proposed
a technique to identify likely refactorings in the changes that have been performed in Java
programs. Overall, these generic patch inference approaches address the challenges of how
the patterns that will be leveraged in practice. Our work goes in that direction by yielding
different kinds of patterns for different purposes: shape-based patterns reduce the context of
code to match; action patterns are the ones that correspond to fix patterns used in the repair
community; token patterns are used for inferring collateral evolutions.

8 Conclusion

We have presented FixMiner, a systematic and automated approach to mine relevant and
actionable fix patterns for automated program repair. The approach builds on an iterative
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and three-fold clustering strategy, where in each round forming clusters of identical trees
representing recurrent patterns.

We assess the consistency of the mined patterns with the patterns in the literature. We
further demonstrate with the implementation of an automated repair pipeline that the pat-
terns mined by our approach are relevant for generating correct patches for 26 bugs in the
Defects4J benchmark. These correct patches correspond to 81% of all plausible patches
generated by the tool.

Availability All the data and tool support is available at:
https://github.com/SerVal-DTF/fixminer-core.
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Liu K, Koyuncu A, Bissyandé TF, Kim D, Klein J, Le Traon Y (2019b) You cannot fix what you cannot find!
an investigation of fault localization bias in benchmarking automated program repair systems. In: 2019
12th IEEE conference on software testing, validation and verification (ICST), pp 102–113. IEEE
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Bissyandé is the PI of the CORE RECOMMEND project on program repair, under which the current work
has been performed.

Dongsun Kim is a Software Engineer at Furiosa.ai. He was formerly a research associate at the University of
Luxembourg and a post-doctoral fellow at the Hong Kong University of Science and Technology. His research
interest includes testing AI systems, automatic patch generation, fault localization, static analysis, and search-
based software engineering. In particular, automated debugging is his current focus. His recent work has been
recognized by several awards such as a featured article of the IEEE Transactions on Software Engineering
(TSE) and ACM SIGSOFT Distinguished Paper of the International Conference on Software Engineering
(ICSE). He is leading the FIXPAT-TERN project funded by FNR (Luxembourg National Research Fund)
CORE programme.

Empirical Software Engineering (2020) 25:1980–20242022



Jacques Klein is senior research scientist at the University of Luxembourg, and at the Interdisciplinary Centre
for Security, Reliability and Trust (SnT). He receivedhis Ph.D. degree in Computer Science from the Uni-
versity of Rennes, France in 2006. His main areas of expertise are threefold: (1) Mobile Security (malware
detection, prevention and dissection, static analysis for security, vulnerability detection, etc.); (2) Software
Reliability (software testing, semi-automated and fully-automated program repair, etc.); (3) Data Analytics
(multi-objective reasoning and optimization, model-driven data analytics, time series pattern recognition, text
mining, etc.). In addition to academic achievements, Dr. Klein has also standing experience and expertise on
successfully running industrial projects with several industrial partners in various domains by applying data
analytics, software engineering, information retrieval, etc., to their research problems.

Martin Monperrus is Professor of Software Technology at KTH Royal Institute of Technology. He was
previously associate professor at the University of Lille and adjunct researcher at Inria. He received a Ph.D.
from the University of Rennes, and a Master’s degree from the Compiégne University of Technology. His
research lies in the field of software engineering with a current focus on automatic program repair, program
hardening and chaos engineering.

Empirical Software Engineering (2020) 25:1980–2024 2023



Yves Le Traon is professor at University of Luxembourg, in the domain of software engineering, testing,
security and model-driven engineering. He received his engineering degree and his PhD in Computer Sci-
ence at the “Institut National Polytechnique” in Grenoble, France, in 1997. From 1998 to 2004, he was an
associate professor at the University of Rennes, in Brittany, France. From 2004 to 2006, he was an expert
in Model-Driven Architecture and Validation at “France Te le com R&D”. In 2006, he became professor at
Telecom Bretagne (Ecole Nationale des Tlcommunications de Bretagne). He is currently the head of the CSC
Research Unit (e.g. Department of Computer Science) at University of Luxembourg. He is a member of the
Interdisciplinary Centre for Security, Reliability and Trust (SnT), where he leads the research group SER-
VAL (SEcurity Reasoning and VALidation). His research interests include software testing, model-driven
engineering, model based testing, evolutionary algorithms, software security, security policies and Android
security. The current key-topics he explores are related to Internet of things (IoT), Big Data (stress testing,
multi-objective optimization and data protection), and mobile security and reliability. He is author of more
than 140 publications in international peer-reviewed conferences and journals.

Affiliations

Anil Koyuncu1 ·Kui Liu1 ·Tegawendé F. Bissyandé1 ·Dongsun Kim2 ·
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Tegawendé F. Bissyandé
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