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Abstract. As a new era of “Big Data” comes, contemporary database
management systems (DBMS) introduced new functions to satisfy new
requirements for big volume and velocity applications. Although the
development agenda goes at full pace, the current testing agenda does
not keep up, especially to validate non-functional requirements, such as:
performance and scalability. The testing approaches strongly rely on the
combination of unit testing tools and benchmarks. There is still a testing
methodology missing, in which testers can model the runtime environ-
ment of the DBMS under test, defining the testing goals and the harness
support for executing test cases. The major contribution of this paper
is the MoDaST (Model-based Database Stress Testing) approach that
leverages a state transition model to reproduce a runtime DBMS with
dynamically shifting workload volumes and velocity. Each state in the
model represents the possible running states of the DBMS. Therefore,
testers can define state goals or specific state transitions that revealed
bugs. Testers can also use MoDaST to pinpoint the conditions of perfor-
mance loss and thrashing states. We put MoDaST to practical applica-
tion testing two popular DBMS: PostgreSQL and VoltDB. The results
show that MoDaST can reach portions of source code that are only possi-
ble with non-functional testing. Among the defects revealed by MoDaST,
when increasing the code coverage, we highlight a defect confirmed by
the developers of VoltDB as a major bug and promptly fixed.

1 Introduction

Scalable and high performance data processing is one of the key aspects for
successful business operations as the volume of incoming transactions is getting
larger for most application areas. Over the last 40 years traditional “one-size-
fits-all” Database Management Systems (DBMS), such as DB2, Oracle, Post-
greSQL, have been successful in processing transactions. However, the recent
growth of the transaction workload (e.g., Internet, Cloud computing, Big Data)
is challenging these DBMS requiring revisiting their kernel. Even new DBMS
are being designed ground up to better tackle these workloads.
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Although the development agenda goes at full pace, with the recent appear-
ance of a great deal of new DBMS, the testing agenda does not keep up, specially
for validating non-functional requirements, such as performance, robustness and
scalability. With the increasing demand in volume and velocity of transactions,
many load conditions challenge the DBMS in unexpected ways that the state
of the art in testing tools cannot exercise. Different bugs can be found in the
literature describing that the root cause is linked to different conditions of tran-
sient load shifts or sudden spikes. The result in the DBMS can be treacherous
leading to a number of non-functional failures, such as: poor performance query
plans [1], backpressure1, lock escalation (for lock-based mode) [2], poor perfor-
mance estimations [3], performance degraded mode and load shedding [4]. Many
of these failures are also called “Heisenbugs” [5], because the root cause are not
easy to detect and may elude the bug-catcher for years of execution.

1.1 Motivation

The bug-catching task becomes even harder when the existing testing method-
ologies for transaction processing only validate functional requirements [6,7]. The
validation of non-functional requirements is still an open issue and strongly rely on
the combination of unit testing tools2 (e.g., Jepsen, JUnit, Jmeter, PeerUnit [8])
and benchmarks to reproduce specific workloads (e.g., TPC-like, YCSB).

The main problem with this combination is that it is strictly based on tools
and does not adhere to a general methodological testing approach. In general,
this combination has to be conservative to eke out the “ideal” testing environ-
ment: test cases mimic any benchmark workload and then execute on top of
an unit testing tool. However, the expected environment grounds testing with
a proper methodological approach to define the testing goals and the harness
support for executing test cases. Writing and executing test cases come later.

The major contribution of this paper is such a methodological approach
that can eventually be implemented on top of any unit testing tool with the
benchmark of your choice. Figure 1 shows the impact on PostgreSQL of executing
test cases with and without a testing methodology. The impact is measured
by the code coverage ratio of our methodological approach and the same test
case reproducing the TPC-C benchmark workload on top of a unit test tool
without following any testing methodology. First, we see that the impact of
shifting the transaction load in PostgreSQL can only be analyzed when testing
is driven by a methodological approach. Second, we notice that the load shifting
exercises PostgresSQL in different code portions. More interestingly, when the
DBMS is upon heavy loads (rightmost bar), the throughput goes down, but
exercising almost 60% of the source code of the kernel (12% more than the
steady condition).

This result shows that even the kernel of a mature DBMS, such as Post-
greSQL, is not acquainted to non-functional testing, which would reveal the

1 https://voltdb.com/docs/UsingVoltDB/DesignAppErrHandling.php.
2 VoltDB testing: https://voltdb.com/blog/how-we-test-voltdb.

dongsun.kim@uni.lu

https://voltdb.com/docs/UsingVoltDB/DesignAppErrHandling.php
https://voltdb.com/blog/how-we-test-voltdb


“Overloaded!” — A Model-Based Approach to Database Stress Testing 209

Fig. 1. Example of inherent limitations of the existing testing tools.

bugs that we discuss in this paper (see Fig. 2). To come up with a general non-
functional testing approach for transaction processing in the Big Data era, it is
important to define a running model of the Database System Under Test (DUT)
that allow reproducing and harnessing load shifts.

1.2 Contribution

This paper presents, MoDaST (Model-based Database Stress Testing), a novel
methodological approach to DBMS stress testing. This approach focuses on test-
ing scalability and performance of DBMS with dynamically changing load lev-
els by using a test model for database systems. The approach leverages a state
machine model with observable runtime states: warm-up, steady, under-pressure,
stress, and thrashing. The model allows us to infer and explore internal states of
the DUT even if black-box testing is only available. The observable states can
basically be used for guiding the testing goals with test cases forcing the state
transitions. More importantly, MoDaST allows reproducing the state transitions
for regression or to figure out what is the exact condition that revealed a bug.

Fig. 2. Conceptual execution paths under normal and stress conditions.
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To evaluate MoDaST and show that it can be put to practical application, we
applied it to two different classes of real-world DBMS (i.e., SQL and NewSQL)
collected from open source projects: PostgreSQL and VoltDB. We designed a
distributed stress testing environment by using a cluster facility and a distributed
testing driver to shift the submission volume and velocity of the workload. We
collected performance monitoring data and code coverage to figure out whether
there is any potential defect. We also conducted a comparative study between
MoDaST and unit testing running the TPC-C benchmark to find out which one
can correctly test different behaviors of DBMS and cover more source code.

The results of the experiments showed that our approach successfully drove
the DUTs into the different states specified in the test model. MoDaST found
out that DUTs actually follows the model by observing performance data. In
addition, the results revealed that our approach explored different performance
behaviors and increased test coverage up to 20% in certain code packages of
PostgreSQL and 12% for VoltDB compared to the baseline technique. Newly
covered lines by MoDaST exposed three new bugs. In particular, one of the bugs
had significant impact on VoltDB by affecting not just non-functional but also
functional requirements upon heavy load conditions. This bug was confirmed
and promptly fixed by the VoltDB hackers after our reporting3.

Overall, this paper makes the following contributions: 1- Database state
model: We designed a running model to infer the internal states of DBMS based
on performance observations. Among different possible states, our model detects
performance loss and thrashing states at runtime. 2- MoDaST, a model-
based DB stress testing approach: We introduce a novel testing approach to
force state transitions in the model by shifting the transaction loads. The state
transitions allow exercising different source code portions of the DBMS that
would never be exercised by single test cases of unit testing tools. 3- Empiri-
cal evaluation: We present empirical evaluation results by applying MoDaST
to popular open-source DBMS. Based on the evaluation results, we identified
and reported potential bugs. One of them was confirmed as “major bug” and
promptly fixed by the core developers.

The remainder of this paper is organized as follows. Section 2 we discuss the
related work. Section 3 describes our model-based approach to database stress
testing. Section 4 we present empirical results stress testing two popular DBMS.
Finally, Sect. 5 concludes with future directions.

2 Related Work

Stress testing is designed to impose heavy loads such as HTTP requests or
database queries at the same time to ensure the reliability of the system In
DBMS, performance/stress testing validates the system from different angles.
Commonly, this validation is executed through a benchmark pattern to repro-
duce a production environment. Since the DebitCredit benchmark [9], several
benchmarks were presented along the last decades. These benchmarks focus
3 https://issues.voltdb.com/browse/ENG-6881.
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on comparing metrics (e.g., response time, throughput, and resource consump-
tion) [3]. The TPC-like benchmarks offer different workload levels to evaluate
databases from two perspectives: OLTP or OLAP. In contrast, the Yahoo Cloud
Serving Benchmark (YCSB) [10] is designed to evaluate four specific features
of distributed databases: Performance, Scalability, Availability and Replication.
There are another type of benchmarks focusing on DBMS availability: R-cubed
[11], DBench-OLTP [12], Under Pressure Benchmark [13].

Some of existing performance testing tools attempt to test database systems
under different levels of workload. Jepsen4, Hammerora5, AppPerfect6 and Ora-
cle Application Testing Suite7 provide a test driver to build up test cases on
top of TPC-like benchmarks. Agenda [7] provides its own methodology and test
driver, but this tool can only generate functional test cases. JMeter is also a well
known and widely applied load testing tool for different applications, including
DBMS. But, it was designed to load test functional requirements.

The main disadvantage of these tools is the lack of a high level testing
methodology, like MoDaST. In software testing, the testing methodology is the
foundation over which the tools are used [14]. Otherwise, test cases will be nar-
rowed to reproduce specific load conditions that cannot reflect a far more aggres-
sive real-world production environment with load spikes and shifts after a while
in steady condition state [1,4]. In addition, these tools cannot correlate perfor-
mance loss and related defects to specific its root causes.

Finally, techniques to generate test cases can be used to boost testing results
of MoDaST for specific testing goals. For instance, [15,16] presents a technique
to generate queries with cardinality constraints for validating multidimensional
histograms A complementary technique to generate test databases is presented
in [17]. Although MoDaST is a testing model, rather than a data/query genera-
tion tool, it was built for validating write-mostly, while the mentioned techniques
are meant to read-mostly database systems assessments.

3 Approach: MoDaST

This section describes our Model-based Database Stress Testing (MoDaST) app-
roach. Figure 3 shows an overview of this approach. MoDaST consists of the
Database State Machine (DSM) and a test driver. The DSM represents a set of
observable states of a DBMS and its transition function. The test driver defines
the load model of each state and commences performance testing by giving a
specific load to the DUT. Then, the driver observes the current performance
data of the DUT and figures out state transitions by giving the data to DSM.
The remainder of this section details MoDaST.

4 https://aphyr.com/tags/jepsen.
5 http://hammerora.sourceforge.net/.
6 http://www.appperfect.com/.
7 http://www.oracle.com/technetwork/oem/app-test/index.html.
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Fig. 3. Architectural overview of MoDaST.

3.1 The Database State Machine (DSM)

The DSM models how a DUT behaves at given workload levels. In particular,
DSM focuses on representing observable states of a DUT with respect to perfor-
mance (i.e., performance behaviors). The behaviors of a DUT can be represented
by the following states: Warm-up (s1), Steady (s2), Under Pressure (s3), Stress
(s4), Thrashing (s5). We formally define the DSM and its corresponding states
in Definition 1. Figure 4 depicts the DSM, the running states and transitions.

s1 s2 s3 s4 s5

Fig. 4. The Database State Machine (DSM) and the observable states.

Definition 1. The Database State Machine (DSM) denoted as T, is a 5-tuple
(S, s1,F ,β, τ) where:

– S = {s1, s2, s3, s4, s5} is a set of states,
– s1 ∈ S is the initial state,
– F ⊂ S is the set of final states, where F = {s5} in DSM,
– β is the set of performance input defined by Definition 2,
– τ a state transition function defined by Definition 6.

The detailed information about every state is available in Sect. 3.1. To
describe each state in detail, it is necessary to define the performance input,
β. Based on the performance input, the DSM determines state transitions, τ .

Performance Input: DSM takes three different performance input from a DUT
to infer its current internal state. The input, β, is the set of (1) the performance
variation, (2) the transaction efficiency, and (3) the performance trend.

Definition 2. The performance Input, denoted by β, is a tuple of three per-
formance variables: β =< ∆, δ,ϕ¿, where ∆ is the performance variation (Defi-
nition 3), δ is the transaction efficiency (Definition 4), and ϕ is the performance
trend (Definition 5), respectively.
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The performance variation represents the stability of transactions treated
by a DUT. This is denoted by ∆ as shown in Definition 3. MoDaST makes
n observations (n > 1) and computes the number of transactions treated per
second (y) for each observation. For example, if ∆ → 0, the DUT is processing
a steady number of incoming transactions.

Definition 3. The performance variation, ∆, is the dispersion of the number
of treated transactions per second and formally defined as:

∆ =

√√√√ 1
n − 1

n∑

i=1

(yi − µ)2, (1)

where µ = 1
n

∑n
i=1(yi)

The transaction efficiency, δ, is the proportion between the number of
transactions treated by a DUT and requested by clients. This enables to define
the upper bound number of transactions in concurrent execution with steady
behavior. For example, if δ → 1 across a number of performance observations,
the DUT is successfully treating most of transactions requested by clients.

Definition 4. The transaction efficiency, denoted by δ, is the proportion of
the transactions treated per second (y) by the number of transactions requested
per second (z):

δ =
y

z
(2)

The performance trend, ϕ, is a metric explaining the expected perfor-
mance slope of a DUT within a certain size of a sliding window as described in
Definition 5. As shown in Fig. 5, ϕ can be computed by the distance between the

Fig. 5. DSM and its performance input. The X-axis is time in seconds and the Y-
axis represents transactions per second. This shows relationships between performance
input and states in DSM.
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current time (observation) and expected time when the transaction efficiency of
the DUT converges to 0 (i.e., δ = y/z = 0, where z ̸= 0). Section 3.2 describes
how to compute the distance in detail.

Definition 5. The performance trend is a function defined as

ϕ = x′ − x (3)

where x is the current time and x′ represents the point that the tangent line
crosses the time axis.

States: The DSM models, with a state machine, the database performance
states found in the literature in which non-functional bugs were reported [1–5].
The following paragraphs describe each state in detail.

State 1 — Warm-up: This state is the startup process of the DUT. In this
state, the DUT initializes internal services such as transaction management ser-
vice. Although some transactions can be treated during this state, performance
is not stable since the DUT focuses on filling memory caches. DSM defines the
Warm-up state by using performance variations (∆ in Definition 3).

The DSM infers that a DUT is in the Warm-up state if ∆ is not converging
to 0 after the startup of the DUT. In other words, ¬(∆ < tw), where tw is
the warm-up threshold value. Otherwise (i.e., ∆ < tw holds), the transition to
the next state (i.e., Steady) is triggered. Each DBMS has a unique tw value.
Section 4 explains how to determine the value.

State 2 — Steady: The DSM infers this state if the performance variation,
∆, is converging to 0. Once the DUT is in this state, it never comes back to
the Warm-up state again since all the internal services are already initialized
and running. In addition, the memory cache of the DUT is filled to provide the
expected performance, which indicates that the DUT can correctly treat most
of incoming transaction requested by clients in time. Specifically, this can be
represented as δ > ts, where ts is the steady threshold value. Each DBMS has a
different value for the threshold that may vary based on the type of the expected
workload and the available hardware environment.

State 3 — Under Pressure: This state implies that a DUT is on the limit of
performance. The DUT goes to the state if δ approaches to zero, which means
that a set of unexpected load is coming to the DUT. Unexpected loads include
shifts and sudden spikes (e.g., Black Friday or Christmas) that affect perfor-
mance [1,4,13]. In this state, the DUT can still deal with the similar amount
of transactions processed in the previous state (Steady). However, it cannot
properly treat a certain amount of transactions in time since the total amount
requested by clients is beyond the limit of the DUT. Although this situation can
be transient, it might need an external help from the DB administrator (DBA)
to go back to Steady. For example, DBA can scale up the DUT’s capability or
set up the DBMS to reject a certain amount of the incoming transactions until
the load decreases to an acceptable amount (i.e., z → y and δ > ts).
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State 4 — Stress: a DUT goes into this state when the number of transactions
requested by clients is beyond the performance limit. This state is different from
the Under Pressure state since the performance variation (i.e., ∆) increases. The
DUT in this state is highly vulnerable to crash if no external help is available.
For example, the DBA should consider additional solutions such as adopting
database replica, adding more cluster machines, or killing long running transac-
tions (normally triggered by bulk loads). If an appropriate solution is performed,
the DUT can go back to the Under Pressure state and ∆ < tst, where tst is the
stress threshold value.

State 5 — Thrashing: This state represents that the DUT uses a large amount
of computing resources for a minimum number of transactions. The DUT expe-
riences resource contention and cannot deal with any new transaction in this
state. In this state, it is no longer possible to come back to the previous one
as any external intervention is useless. The DSM detects the transition to the
Thrashing state if ϕ < tth, where tth is the thrashing threshold value. Predicting
the thrashing state is explained in Sect. 3.2.

State Transitions: The state transition function, τ , determines whether the
DUT changes its internal state based on observed performance data. This func-
tion takes performance input (< ∆, δ,ϕ >) from the test driver and gives the
next state s ∈ S as described in Definition 6. In each state, the DSM examines
the current values of performance input and compares the values with threshold
values8 (i.e., tw, ts and tst). Table 1 summarizes the threshold values.

Definition 6. The state transition function, τ , is defined as:

τ : S × β → S (4)

where ∀s ∈ S,∃p ∈ β and ∃s′ ∈ S|(s, p) → (s′).

Table 1. Threshold values for state transitions.

Target state

States s1 s2 s3 s4 s5

s1 ¬(∆ < tw) ∆ < tw - - -

s2 - δ > ts ¬(δ > ts) - -

s3 - δ > ts ¬(δ > ts) ∆ > tst -

s4 - - ¬(∆ > tst) ∆ > tst ϕ < tth

s5 - - - - ϕ = 0

8 The values used in the experiments are specified in the Sect. 4 since it is variable
depending on the DUT.
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3.2 Predicting the Thrashing State

In addition to stress testing, MoDaST can predict crashes before a DUT actually
goes into the Thrashing state. This indicates the time remaining until out-of-
service and allows DBA to react before service failure.

The first step to predict the Thrashing state is computing the performance
slope. MoDaST uses the Least Squares method [18] that approximates the rela-
tionship between independent (x) and dependent (y) variables in the form of
y = f(x). The testing time in seconds is denoted by x and y denotes the
corresponding throughput at time x. It allows the computation of the three
required coefficients (i.e., a0, a1 and a2) for the quadratic function (i.e., perfor-
mance slope): f(x) = a0x2 + a1x+ a2

Our approach computes the coefficients by using recent p observations9 of
(x, y) (i.e., sliding window). The quadratic function estimates the performance
slope as shown in Fig. 5. Once the performance slope is identified it is possible to
calculate the derivative f ′(x) (i.e., tangent line), considering the current obser-
vation xi. By using the tangent projection in the axis x, MoDaST can estimate
the performance trend, ϕ, according to Definition 5. If the value is converging to
the thrashing threshold (tth), we assume that DUT may crash at any moment
(i.e., transition from the stress to thrashing state).

3.3 The Test Driver

The goal of the test driver is to generate different load conditions and collect the
performance input for the DSM. The test driver is built on top of the PeerUnit
distributed testing framework [8]. PeerUnit allows building, coordinating and
executing distributed test cases, which are key features for stress testing.

Since the performance of a DBMS can be affected by both the number of
connections and transactions, it is necessary to test both the connection and
transaction management modules by using two workload cases as follows: Case
#1: The goal of this case is to submit a heavy load to the connection module
of the DUT. The number of connections is gradually increased for each step.
In this case, the driver submits only one transaction per connection; Case #2:
The goal of this case is to submit a heavy load to the transaction module of the
DUT instead of the connection module. The number of transactions is gradually
increased for each step. In this case, the driver submits an increasing number of
transactions per connection (i.e., fixed number of connections).

4 Empirical Evaluation

We applied our approach to two DBMS running TPC-C: VoltDB 4.5 and Post-
greSQL 9.3. These subjects are selected for several reasons. First, both of them
are ACID open-source RDBMS. In addition, they have representative charac-
teristics of each category: PostgreSQL is a centralized disk-oriented DBMS and
9 p is defined by the least squares correlation coefficient [18].
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VoltDB is a distributed in-memory DBMS. The experiment procedure has four
steps: (1) Submit the load condition, (2) Analyze the execution, (3) Collect the
code coverage data, and (4) Proceed to the comparative study.

The experiments are executed on a HPC platform [19]. We used two differ-
ent configurations: (1) 11 machines for PostgreSQL (one DBMS server and ten
testers) and (2) 13 machines for VoltDB (three DBMS server and ten testers).
Each machine has dual Xeon X5675@3.07GHz with 48GB of RAM running
Debian GNU/Linux and connected by the Infiniband QDR (40Gb/s) network.
Our approach is implemented in Java 7. To collect the code coverage information
of PostgreSQL, we used the GNU/Gcov, which is supported by default by the
DBMS. For VoltDB, the code coverage is measured by Eclemma JaCoCo, since
the DBMS is implemented in Java.

The threshold values are specified in Table 2. They were set based on the
available hardware, the workload of our choice and the architecture of the DBMS.
For instance, VoltDB does not need threshold values for the warm-up and thrash-
ing states. Since VoltDB is an in-memory database, the warm-up process is
basically instant. The thrashing state was not observed on the VoltDB. The ts
threshold is limited by 90% of the transaction rate acceptance and the tst is
limited by 10% of the transaction acceptance rate compared to the previous
state “tpsup” (i.e., Under Pressure). For the tth, we used one second. The slide
window is set to 60 observations (i.e., p = 60).

Table 2. Threshold values for the state transitions. VoltDB does not need values for
the warm-up and thrashing states since this DBMS does not experience these states.

PostgreSQL VoltDB

tw 0.1 –

ts 0.9 0.9

tst 0.1 * tpsup 0.1* tpsup

tth 1 –

The remainder of this section is guided by four research questions that are,
respectively, related to: 4.1 performance results, 4.2 code coverage, 4.3 defects,
and 4.4 thrashing prediction.

4.1 Does DSM Properly Reflect Performance Behaviors of a DUT?

This is the baseline question since our approach assumes that the DUT follows
the DSM as designed. PostgreSQL experienced all the states of DSM as shown
in Fig. 6. It presented an unexpected behavior concerning the ability to maintain
a stable performance. During the execution of the workload case #1, the test
driver increased the number of connections sequentially as described in Sect. 3.3.
According to the specification of PostgreSQL, it can process 2,000 concurrent
connections (i.e., defined by the MAX CONNECTION configuration). However,
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Fig. 6. Performance results of PostgreSQL. Fig. 7. Performance results of VoltDB.

the DUT could not deal with any workload greater than 1,000 concurrent con-
nections as shown in Fig. 610. For the workload case #2, the test driver increased
the number of transactions with a fixed number of connections. PostgreSQL’s
behavior was more stable in this case and did not reach the thrashing state.
However, it stayed either in the under pressure or stress states.

VoltDB presented consistent results in terms of throughput stability. Thus,
the DUT was mostly either in the steady or under pressure states for both
workload cases (see Fig. 7). However, the connection module was forced into
stress state triggering a backpressure condition when applying the workload case
#1. This condition occurs when a burst of incoming transactions was sustained
for a certain period of time. This period must be sufficient to make the planner
queue full. More information about this condition will be described in Sect. 4.3.

A curious reader may ask what would happen if instead of using MoDaST,
we execute stress testing with a combination of standard benchmark on top
of a popular testing tool, like jepsen or jmeter. We call this combination as
baseline approach. By definition, this baseline approach considers performance
constraints to ensure the DBMS on the steady state during measurement time.
For example, one of the constraints defined by TPC-C as “Response Time” is:
“At least 90% of all transactions of each type must have a Transaction RT less
than 5 s...”. Thus, it is not possible to explore any stress condition of the DUT,
since it never reached the under pressure nor the stress states. In both workload
cases, the baseline approach only contemplates the steady state.

Answer: MoDaST drove a DUT into each state of the DSM while the baseline
technique can only explore two initial states.

4.2 How Much Does Our Approach Cover the Source Code
of a DUT (i.e., Code Coverage)?

This question is about our assumption that some execution paths in DBMS
source code can only be explored when a certain amount of workload is requested.

10 The thrashing state is only observable in the workload case #1.
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Fig. 8. Code coverage results of Post-
greSQL. This focuses on three major
modules: Free Space, Page, and Man-
ager.

Fig. 9. Code coverage results of VoltDB.
These packages are related to the concur-
rency control and server management

Figure 8 shows the code coverage results of PostgreSQL. Three packages pre-
sented a significant impact on the following modules: (i) Freespace that imple-
ments the seek for free space in disk pages; (ii) Page that initializes pages in
the buffer pool; and (iii) Manager that implements the shared-row-lock. The
coverage increased mainly during the two last states: stress and thrashing. It
occurs because those packages are responsible for managing disk page allocation
and the transaction lock mechanism. PostgreSQL needed to execute functions
dedicated to stress conditions to allocate extra resources and to deal with the
high concurrency when the number of transactions increases.

VoltDB showed a notable improvement of code coverage results as shown in
Fig. 9, even though it was not significant compared to that of PostgreSQL. We
observed the improvement in two packages: org.voltdb and org.voltdb.sysproc.
These packages manage the maximum number of connections and concurrent
transactions. The package “org.voltdb.sysproc” is related to the basic manage-
ment information about the cluster. The above-mentioned VoltDB classes were
not covered when applying the baseline approach. Basically, the warm-up and
steady states did not generate any concurrent condition. We see the same result
for PostgreSQL testing.

Answer: MoDaST allows to explore a larger part of source code of DUTs than
the baseline technique since a certain part of source code can be executed only
when pushing the DUT to heavy loads.

4.3 Does Our Approach Find Bugs?

This question is correlated to the previous one; if MoDaST can explore more
lines of code by submitting different load conditions, we may find new defects
located in functions dealing with stress conditions. During the experiments, we
found two potential defects (one from PostgreSQL and one from VoltDB) and
one new unreported major bug (VoltDB).
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We identified a performance defect of PostgreSQL, which is related to the
inability to deal with the incoming connections, mainly in the workload case #1.
Actually, the defect can be triggered either by transaction or connection flooding.
PostgreSQL implements a backend process to deal with the incoming clients.
Each client keeps one connection with the database. Thus, for each incoming
connection, the DUT starts a new backend process.

Moreover, each connection holds one or more transactions, which proceed
to modifications in the database. The modifications are made by insert and
update operations that compose each transaction. The DBMS configuration
allows to set the number of concurrent connections (i.e., MAX CONNECTIONS)
up to the resources limitations. In our experiments, the maximum value set for
MAX CONNECTIONS was 2,000. Despite of the limit, PostgreSQL was not
able to reach the number of 2,000 open connections at any time. As the number
of connections/transactions increases, PostgreSQL spends most of the compu-
tational power dealing with the table locks instead of creating new backend
processes. From the testing point of view, we consider a potential defect.

VoltDB experienced a backpressure condition by applying the workload case
#2. The increasing number of submitted transactions, via JDBC interface, fulfills
the planner queue limit (i.e., 250) and raised up the message below: (GRACE-
FUL FAILURE): ‘Ad Hoc Planner task queue is full. Try again.’ This
can be considered a potential defect11, once the planner queue is waiting for
VoltDB planner. The planner became full and started to reject new operations.

The code coverage also enabled to reveal a functional bug. Figure 10 shows
the code fragment where the defect was identified (Line 426). We reported this
bug12 to the developer community of VoltDB. This branch of code is responsible
for ensuring that the DUT does not accept more concurrent connections than the
maximum constraint allowed by the server resources. The bug rose up when our
approach led the DUT to the stress state, which exposed it to a race condition in
the connection module. The solution for this bug is to ensure that, even during
race conditions, the number of concurrent connections never goes beyond the
limit. Basically it should be guaranteed in the condition statement (i.e., IF) by
replacing “==” by “>=”. VoltDB developers created a bug report13 as a major
bug and promptly fixed after our reporting.

Answer: The MoDaST found and reproduced three potential defects and one of
them is confirmed as a major bug by the developers of VoltDB.

...
426 if (m_numConnections.get() == MAX_CONNECTIONS.get()) {
427 networkLog.warn(’’Rejected connection from ’’ +

...

Fig. 10. Example of bug only identified under stress conditions.

11 http://zip.net/bmps8J.
12 http://zip.net/byptRy.
13 https://issues.voltdb.com/browse/ENG-6881.
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4.4 Can Our Approach Predict Performance Degradation
(e.g., the Thrashing State)?

This question is necessary because performance prediction is one of the advan-
tages when using MoDaST. If the prediction is available, the DBA can apply
several solutions for preventing DBMS crashes. Our approach could predict the
thrashing states of PostgreSQL (see Fig. 6). However, due the instability of Post-
greSQL, it crashed immediately after detecting ϕ < tth. Thus, it is almost impos-
sible to take any action to avoid such a state. VoltDB never went to the thrashing
state under the two workload cases. This implies that ϕ ≫ tth and VoltDB was
highly stable. It does not mean that our approach was not effective. Rather,
MoDaST correctly performed thrashing prediction for a stable DBMS. Due to
our limited resources, we could not significantly scale up the number transac-
tions. This remains as future work.

Answer: The thrashing prediction showed to be precise, even with: (1) Perfor-
mance instability of PostgreSQL; (2) Resources limitations to crash VoltDB.

5 Conclusion

In this paper, we presented a novel model-based approach to database stress
testing, MoDaST. It leverages a state machine to figure out the internal state of
DBMS at run time. We evaluated MoDaST on two popular DBMS: PostgreSQL
and VoltDB. Our results show that MoDaST can successfully infer their current
internal state based on the state model. We also found out that submitting a
high workload can lead to exercising the kernel in many different ways that is
not possible by the current testing tools. Consequently, we identified new bugs in
both DBMS. In particular, one of the bugs is already confirmed as “major bug”
and promptly fixed by the VoltDB hackers. Our future work includes applying
MoDaST to NoSQL and Streaming DBMS, since they implement different levels
of concurrency control for transaction processing and, therefore, require different
testing assumptions.
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