
Usage History-based Architectural Scheduling∗

Dongsun Kim, Seokhwan Kim, and Sooyong Park

Department of Computer Science and Engineering, Sogang University

Shinsoo-dong, Mapo-Gu, Seoul, Korea

darkrsw@sogang.ac.kr, goatkhan@gmail.com, sypark@sogang.ac.kr

Abstract

Waiting a long time for software applications to load

typically elicits an adverse response from the user. This

negative response eventually leads to decreased user sat-

isfaction. The waiting time can be reduced by executing the

application in improved hardware computing devices and

by optimizing the algorithms constituting the application;

however, these solutions are costly. An alternative approach

is to overlap the execution and waiting times. Although this

approach does not reduce the actual waiting time, it can

reduce the user’s waiting time. This study proposes an ap-

proach to decrease the waiting time by scheduling archi-

tectural units. The study formulates the dynamic architec-

tural scheduling problem and it provides an overlapping ap-

proach to the problem on the basis of the formulation. This

approach anticipates subsequent tasks from previous usage

history and launches the corresponding components of the

anticipated tasks in the task architectures. Evaluation of

this approach shows that it effectively schedules applica-

tions and reduces waiting time.

1. Introduction

In spite of enhancements in contemporary computing

systems, increasing the functions of software applications

still leads to longer waiting times. Protracted waiting times

result in low user satisfaction. One possible approach to de-

crease the waiting time is to use faster, improved computing

devices; however, this leads to increased cost. Another pos-

sible approach is to overlap the application’s execution and

preparation times (i.e., loading and initialization time). Al-

though this approach cannot fundamentally reduce the load-

ing and initialization time of software systems, it can reduce

the user’s waiting time.

∗This research was performed for the Intelligent Robotics Development

Program, one of the 21st Century Frontier R&D Programs funded by the

Ministry of Knowledge Economy (MKE).

Another possible reason for an increase in waiting time

is memory swapping. In a system, when the memory space

used by the applications in a system exceeds the physically

provided memory size, the system uses secondary storage

(e.g., magnetic disks) as the memory space. This causes re-

peated storage accesses, which may lead to delays in load-

ing. Therefore, this study provides a scheduling method for

an application in a limited memory space.

In this study, we formulate the abovementioned problem

into a dynamic architectural scheduling problem. This for-

mulation defines tasks, task architectures, and components.

The objective of this formulation is to minimize the waiting

time by optimally scheduling the software architecture. On

the basis of the formulation, an overlapping approach to de-

crease the waiting time is proposed. The approach provides

a prediction algorithm that anticipates the subsequent user

tasks in a short time. Although the prediction results are

not optimal, the approach provides sufficiently good results

without increasing the user’s waiting time.

After anticipating the subsequent tasks, this approach

loads and initializes components in the task architectures.

During this period, newly loaded and existing components

can exceed the specified memory space. Our approach ap-

plies a replacement algorithm based on the least recently

used (LRU) principle. This algorithm removes components

that were used a long time ago and maintains the appli-

cation without exceeding the specified memory space. On

the basis of the prediction and replacement algorithms, this

approach deals with the dynamic architectural scheduling

problem.

The remainder of this paper is organized as follows: Sec-

tion 2 relates this approach to existing work. Section 3

provides a motivating example that requires dynamic archi-

tectural scheduling. Section 4 formulates the dynamic ar-

chitectural scheduling problem. In Section 5, we propose

our approach to the dynamic architectural scheduling prob-

lem; that the proposed approach comprises prediction and

replacement algorithms. Section 6 evaluates our approach

in terms of accuracy and applicability. Finally, Section 8

provides the conclusion and suggests further studies.

2009 33rd Annual IEEE International Computer Software and Applications Conference

0730-3157/09 $25.00 © 2009 IEEE

DOI 10.1109/COMPSAC.2009.65

443

13.23

36.965
44.035

34.75

0
5

10
15
20
25
30
35
40
45
50

Photoshop Eclipse

W
ait

ing
 tim

e u
nt

il i
nt

ial
 us

e (
s)

Desktop Laptop

Figure 1. The waiting time until initial use
of each application (Photoshop and Eclipse).

Each time value is the average of ten trials.

These values are measured on a desktop with
2.4 GHz CPU and 2 GB RAM and on a laptop

with 900 MHz CPU and 1 GB RAM.

2. Related Work

Many researchers have investigated the literature on

waiting time. On the Web, download speeds of web pages

are primary design criterion [16]. Long download time

leads to user dissatisfaction. Acceptable waiting time is sill

controversial [1]. Nielsen [15] and Zona Research [26] ad-

vocate the 10-second limit and the 8-second rule, respec-

tively, while other researchers present the two-second rule

[23] and the 12-second rule [5]. Nielsen proposes the influ-

ences of various response times [13], for example, longer

delays than 10 seconds may cause user dissatisfaction and

users may need to be given feedback indicating that they

should wait.

Some research on waiting times present the influence of

users’ intolerance in waiting for computer response. Miller

[10] suggested the two-second rule based on human short-

term memory. This suggestion advocated waiting time more

than two seconds may lead to interference with human

short-term memory. Nielsen [14] suggests that the wait-

ing time should be less than one second for tasks in which

uninterrupted focus is crucial while it should be less than

10 seconds for other types of tasks [13]. In Shneiderman’s

review [23] computing systems should give a response to

users within two seconds.

Several research on user preference characterization sug-

gest that applications should adapt its behavior and structure

to the user’s preference. Schiaffino and Amandi [21, 20]

propose polite personal agents who characterize user pro-

files and provide personalized, context-aware assistance.

Weld et. al [24] presents personalized user interfaces. This

approach anticipates user behavior and provides user inter-

Photoshop (Adobe Systems)

Photo-
shop

Basic
Drawing

Tools
Effect
Tools

Plug-insGraphic
Filters

Character
Design
Tools

Basic
Drawing

Tools
Basic

Drawing
Tools

Effect
Tools

Basic
Drawing

Tools
Effect
Tools

Plug-
ins

Graphic
Filters

Different Preferences

User A:
Basic Usage

User B:
Banner Production

User C: Movie
Special Effect

Different Preferences
Require Different Sets
of functionality

Figure 2. Different users have different pref-

erences for applications.

face adaptation. Leung et. al [7] provides an approach to

developing an adaptive user interface in Eclipse. This ap-

proach suggests a usage prediction mechanism that antic-

ipates the sequence of usage and the Fade algorithm that

determines which elements to be removed from the menu.

3. Motivating Example

The amount of time users wait for computer applications

may influence their satisfaction with those applications. For

example, when a user is trying to edit pictures using an edit-

ing tool such as Photoshop or Paint Shop Pro, he or she

must click the application’s icon and must wait for the ap-

plication to load. This waiting time is caused by preparation

steps such as software module loading and the initialization

of components. The loading time represents time needed to

load the software module to the memory space. The initial-

ization time represents duration of initializing the software

module for use. A significantly long waiting time may elicit

an adverse response from the user [20], and ultimately, it af-

fects the user’s satisfaction with the application.

According to [12], the maximum tolerable waiting time

for the user is approximately two seconds, because of the

problem of loss of human short-term memory after two

seconds[10]. However, most popular applications have a

444

Users A

Basic
Drawing

Tools
Character

Design
Tools

Effect
Tools

Graphics
Filters

Same Preferences

Users B Users C

Users A

Basic
Drawing

Tools
Character

Design
Tools

Effect
Tools

Graphics
Filters …

Users B

Character
Design
Tools

Graphics
Filters

Basic
Drawing

Tools
Effect
Tools …

Users C

Graphics
Filters

Basic
Drawing

Tools
Character

Design
Tools

Effect
Tools …

Figure 3. Different users perform their tasks

in different sequences.

longer waiting time, as shown in Figure 1, which shows the

time duration for startup of applications such as Photoshop

and Eclipse to be definitely longer than two seconds. To

reduce that time, on-demand loading of the dynamic link-

ing library and dynamic shared objects can be used; how-

ever, those technologies merely divide the waiting time into

smaller periods, and the total sum is the same. Moreover,

on-demand loading results in too-frequent delays during ex-

ecution. Therefore, it is necessary to reduce the entire wait-

ing time.

Different users prefer different sets of functionality in an

application. For example, User A uses only the basic draw-

ing tools of Photoshop; User B mainly uses basic drawing

tools and effect tools; and User C often uses basic draw-

ing tools, effect tools, graphics filters, and other plug-ins,

as shown in Figure 2. Similar patterns occur when users

use different applications such as word processors and pro-

gramming environments. This implies that all users’ wait-

ing times can be reduced if the application can infer the

users’ preferred sets of functions. In other words, the wait-

ing time can be decreased if the application loads the re-

quired functions for a specific user.

Users achieve their objectives by sequentially executing

their tasks. This implies that not all component tasks are

required to be loaded because, in general, a user performs

one task at a specific moment. For example, different users

perform their tasks in different sequences, even if they have

the same preferred set of tasks, as shown in Figure 3. If

the application can anticipate the user’s sequence of tasks,

it can reduce the waiting time by immediately loading the

required functions.

Loading every function of an application may require

users to wait for prolonged durations; this is because ex-

cessive disk access due to page replacement leads to perfor-

mance degradation if the application’s memory usage ex-

ceeds the physical memory of the system. In other words,

when the application uses an exceedingly large amount of

memory space and some of them are located in the swap

space, this may lead to repeated disk access and, in conse-

quence, degradation in the application’s performance. This

implies that the application needs to minimize the memory

usage in order to minimize the waiting time. Thus, func-

tions unused for a long time should be removed from the

memory space to minimize the usage of swap space.

The above-mentioned examples imply that the applica-

tion must anticipate the user’s task sequence, dynamically

load the required functions, and optimize the memory us-

age to minimize the user’s waiting time. The next section

formulates this problem.

4. Dynamic Architectural Scheduling

This section formulates the dynamic architectural

scheduling problem. The formulation defines tasks, task ar-

chitectures, and components to solve the problem. The ob-

jective of this formulation is to minimize the user’s waiting

time and not to exceed the specified memory usage. This

formulation is based on the following assumptions.

• Components are sufficiently divided in terms of mem-

ory usage.

• The waiting time of an application is fairly spread over

its components.

• The application is implemented by dynamic architec-

tures.

The first assumption implies that memory-usage effi-

ciency can be influenced by one component if that com-

ponent occupies most of the application’s memory usage.

Therefore, components that comprise the application should

be decomposed so that a few components do not influence

the efficiency. The second assumption is similar to the first

assumption. The waiting time can be influenced by one

component when that component consumes most of the ap-

plication’s total waiting time.

The last assumption implies that the application must

be implemented by dynamic architectures such as Darwin

[8], Acme-based architecture [4], C2-style dynamic struc-

ture [18], and Weave [17]. This enables the application to

dynamically change its architecture when loading functions

445

(components) into the memory space and removing them

from it according to the schedule.

An application task is a unit of the user’s action. The

user performs a sequence of tasks to achieve his or her ob-

jectives. An application has a finite set of tasks that it can

perform. This formulation assumes that a user performs a

task for each time period. Task Ti has a software architec-

ture [22] composed of a set of components to perform the

task. Task architecture Ai represents a software architecture

corresponding to task Ti.

Task architecture Ai organizes components and connec-

tors that provide functionality to execute the corresponding

task Ti. A task architecture has a subset of the entire ar-

chitectural configuration of the application. Therefore, task

architecture Ai can be formulated by

Ai ⊆ Ae

where Ae represents the entire architectural configura-

tion of the application. This partial configuration should be

able to independently deal with a sequence of actions spec-

ified by the corresponding task. In other words, the task

architecture of a specific task must contain a sufficient set

of components to perform the task.

A component in a task architecture is an element that

contains executable code that actually performs the task.

Components actually consume memory space and cause

delays. Component Ci is formulated by three properties:

memory usage, loading time, and initialization time. Mem-

ory usage of Ci is a function defined by time t as follows:

M : C × T → Z
+

where M , C, T , and Z
+ represent memory usage func-

tion, component set, time domain, and positive integer set,

respectively. M(Ci, tk) returns the current memory usage

of component Ci on time tk in kilobytes. The loading

time and initialization time of component Ci are denoted

by Lt(Ci) and It(Ci), respectively, and defined by

Lt : C → Z
+

It : C → Z
+

where these functions return the loading time and initial-

ization time of component Ci in milliseconds (Z+). These

time measures are not time-dependent, because the func-

tions return the average time measured in the development

time. These measures can vary for each loading and ini-

tialization process; however, the variance is not large and

the prediction of the loading and initialization times can be

dependent on various properties. Therefore, the functions

return the previously measured time values.

The objective of this problem formulation is to minimize

the user’s total waiting time by not exceeding a specified

amount of memory space. The total waiting time indicates

time elapsed during a sequence of task execution steps (i.e.,

the waiting time from the beginning to the end of the appli-

cation). The total waiting time Wtot can be defined as

Wtot =

n∑

i

Wi

Wi =
m∑

j

WCj
· E(Cj)

=

m∑

j

[Lt(Cj) + It(Cj)] · E(Cj) (1)

where Wi is the waiting time to begin with i-th task, WCj

is the waiting time of component Cj , and n is the number of

tasks from beginning to end of the user’s job. Every com-

ponent Cj belongs to task architecture Ai of the currently

requested task Ti, and m is the number of components that

belong to Ai. E(Cj) is a function that determines whether

component Cj is already loaded in the memory space and

defined as

E : C → {0, 1}

where E(Cj) returns 0 if component Cj is loaded, other-

wise it returns a value of 1. The total memory consumption

of currently loaded components (i.e., Mtot) can be specified

as

Mtot =

l∑

k

M(Ck, ti)

where k is the number of currently loaded components

in the specified memory space. Mtot indicates the amount

of memory space consumed by the currently loaded compo-

nents when the i-th task is requested (i.e., time ti).

Based on the above formulation, we can specify the ob-

jective of the dynamic architectural scheduling problem as

minimize Wtot (2)

subject to Mtot ≤ Mmax (3)

where Mmax represents the size of the specified mem-

ory space for the application. Equation (2) represents the

objective function, implying that the application must min-

imize the total waiting time to prevent user dissatisfaction,

and Equation (3) represents the constraints, implying that

the memory size consumed by the currently loaded com-

ponent should exceed the specified memory space for the

application. On the basis of the above objective and con-

straints, the next section describes our approach to dynamic

architectural scheduling.

446

5. Approach

This section describes an approach to the dynamic ar-

chitectural scheduling problem. The basic idea of this ap-

proach is to overlap task execution and component loading.

The application cannot reduce the waiting time (i.e., loading

and initialization times) of each component without funda-

mentally modifying the component implementation; how-

ever, such modification may impose additional development

costs, or may not even be possible. Therefore, the remain-

ing solution is to set E(Cj), shown in Equation (1), to 0. In

other words, the total waiting time can be reduced if the ap-

plication can anticipate the sequence of the user’s tasks and

prefetch the required components prior to the user’s task re-

quests.

5.1. Task Prediction

To overlap task execution and component loading, our

approach anticipates the user’s subsequent tasks based upon

his or her previous usage history. This approach accumu-

lates the user’s task-execution history and infers possible

subsequent tasks based on the history. Since the objective

of dynamic architectural scheduling is to minimize the wait-

ing time, the inference must be performed quickly. Further,

the prediction must be as precise as possible.

Task-sequence inference has properties similar to those

of process scheduling for operating systems (OS). In pro-

cess scheduling for OS, optimal scheduling algorithms such

as shortest job first can be applied; however, this cannot be

applied practically, because OS cannot precisely anticipate

the execution time of processes. Moreover, the application

cannot anticipate the sequence of the user’s task. Therefore,

the inference efficiency increases as the user performs sim-

ilar sequences of task execution.

To infer the user’s next tasks, the application must record

and accumulate the user’s task execution history from the

beginning to the end. In the accumulation step, the applica-

tion records every task in the execution. Then, it counts the

number of immediately subsequent steps for every task. For

example, when the application finishes the user’s tasks, the

application counts the number of occurrences of immedi-

ately subsequent tasks as shown in Figure 4. In other words,

a table for the task inference is updated by counting the next

steps of a task, based on previous sequences of task execu-

tion including the sequence executed right beforehand.

On the basis of the inference table, our approach antic-

ipates the next tasks. For a given inference table and the

current task requested by the user, this approach selects the

most frequently occurring subsequent tasks as tasks to be

prefetched. The number of tasks to be prefetched is deter-

mined by window size ω. For example, when the current

task is task A and the window size is 3 (ω = 3), the applica-

Task A Task B Task C Task K…
i-th
Execution

Task B Task D Task G Task N…i+1-th
Execution

…
…

Task C Task B Task F Task Ti+2-th
Execution

1st
Task

2nd
Task

3rd
Task

last
Task

Task A Task B
5 times

Task C
3 times

Task C
2 times

…

…

Task B Task D
7 times

Task B
4 times

Task C
3 times
…

Task C Task H
6 times

Task D
3 times

Task E
2 times
…

…

1st most
occurring
subseq. task

2nd most
occurring
subseq. task

3rd most
occurring
subseq. task

Sequence of tasks
(Usage History)

Inference Table
based on occurrence

Figure 4. Task history accumulation and in-
ference table building.

tion selects tasks B, D, and H to be prefetched at a run-time

based on the currently given inference table shown in Figure

5.

This prediction approach anticipates future tasks by ta-

ble lookup. Although this approach cannot guarantee op-

timal scheduling, simple table lookup guarantees rapid

scheduling. This rapid scheduling can be achieved by ta-

ble building after the application ends. Table building is a

time-consuming task, because it scans every previous task-

execution history; however, this task is performed after ap-

plication execution, and it does not affect the total waiting

time.

5.2. Architecture Loading

The next step of this approach is architecture loading.

On the basis of tasks anticipated by the previous predic-

tion step, the application loads the corresponding task ar-

chitectures to the tasks. This implies that it actually loads

components in the corresponding task architectures. For

example, suppose that the currently loaded component set

Ccur is {C2, C4, C5, C6, C7, C13} and the requested com-

ponent set Creq is C4, C8, C9, C12. At this request, C4

is already loaded and C8, C9, and C12 need to be newly

loaded. Eventually, {C2, C4, C5, C6, C7, C8, C12, C13} is

the required component set. However, the dynamic archi-

tectural scheduling problem described in Section 4 specifies

the maximum amount of memory space that the application

can use. Therefore, it cannot load all required components

447

Task A Task B
5 times

Task C
3 times

Task C
2 times
…

Task B Task D
7 times

Task B
4 times

Task C
3 times
…

Task D Task H
6 times

Task D
3 times

Task E
2 times
…

…

1st most
occurring
subseq. task

2nd most
occurring
subseq. task

3rd most
occurring
subseq. task

Task H Task G
6 times

Task C
3 times

Task K
2 times
…

…
…

Figure 5. An example of task inference.

in the memory space.

To deal with this space constraint, our approach applies

a replacement algorithm. Research in several fields such

as page replacement, document replacement, and proces-

sor replacement has already yielded a number of replace-

ment algorithms such as adaptive replacement cache (ARC)

[9], least recently used (LRU), GreedyDual Size (GDS) [2],

least frequently used (LFU), most recently used (MRU), and

Pseudo-LRU (PLRU). Reineke et al. [19] compared a set

of replacement algorithms from the perspective of behav-

ior prediction, and their results implied that LRU is the best

algorithm. Therefore, our approach adopts LRU as a com-

ponent replacement policy.

According to LRU, the least recently used component

must be removed from the specified memory space. To per-

form this, the application must maintain a table that records

the last-used time of every component. When replacement

is required, the application unloads components until the

memory constraint is met. From the above example, C4,

C8, C9, and C12 are marked as MRU components because

they are the set of newly requested components. Then, it se-

quentially removes the LRU components from component

set {C2, C4, C5, C6, C7, C7, C8, C12, C13}. Since the deci-

sion on LRU components can be made in a linear time, the

algorithm does not lead to an increase in waiting time.

When the required components are not in the memory

(i.e., a prediction is missed), eventually, the application

must load the components on demand. This inevitably leads

to user waiting time. This is the worst case, resulting in de-

lays, because the user must wait for the preparation of soft-

ware components when he or she simply needs to use them.

This implies that the accuracy of the prediction algorithm

directly influences the performance of the approach. There-

fore, the approach must minimize the number of predictions

missed.

Using the task-prediction and component-replacement

mechanisms suggested by our approach, an application can

minimize the user’s waiting time by overlapping the exe-

cution and waiting times. The next section evaluates our

approach from the viewpoints of prediction efficiency and

applicability.

6. Evaluation

This section provides a k-fold cross-validation for the

prediction algorithm and a case study to evaluate the ap-

plicability of our approach. The validation is conducted to

verify how efficiently the prediction algorithm anticipates

subsequent tasks. The case study shows the results of ap-

plying our approach to two open-source applications.

6.1. Prediction Accuracy

The waiting time can decrease as the efficiency with

which the application anticipates subsequent tasks in-

creases. This section verifies the accuracy of our task-

prediction approach described in Section 5.1. In this sec-

tion, prediction accuracy indicates how precisely the ap-

proach anticipates the user’s next task. Prediction accuracy

is measured as follows:

Precision Accuracy =
Prediction Hit

Total Prediction

Our approach’s prediction algorithm is evaluated by the

k-fold cross-validation technique [11, 25]. This technique

divides sample data into K subsets. Then, one subset is

used as test set and K − 1 subsets are used as training sets.

The technique repeats this test procedure for every subset.

This evaluation employs a two-fold cross-validation (i.e.,

K = 2) because the size of the sample data is not suffi-

ciently large.

The data for this evaluation is the user’s task history,

sampled from an undergraduate student’s Photoshop activ-

ity. Independent functions such as plug-ins, drawing tools,

and layer functions are defined as tasks; 22 tasks are defined

and 50 sequences of tasks are recorded. The average length

of sequences is 55. The window size varies from 1 to 22.

The result is shown in Figure 6.

The lower (darker) and upper (lighter) areas represent

the miss ratio and hit ratio, respectively. Hit ratio repre-

sents prediction accuracy, because hit ratio is calculated by

Prediction Hit / Total Prediction. Hit ratio is

larger than 80% from ω = 4. This implies that the predic-

tion approach effectively anticipates the subsequent tasks

with small window sizes. Further, hit ratio converges to

100% as the window size increases; however, larger win-

dow sizes may lead to increased component replacement,

because a large number of tasks may cause larger mem-

ory consumption. Therefore, it is important to determine

448

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Window Size

Miss Ratio Hit Ratio

Figure 6. Miss ratio and hit ratio of the predic-

tion approach described in Section 5.

an appropriate window size. Further discussion about the

window size is provided in Section 7.

6.2. Case Study

Two applications from the open-source community have

been chosen to apply to our approach-C.E.L Pad [3] and

JDraw [6]-because these applications have several options

for user interaction. We re-engineered these applications

to contain tasks, task architecture, and components. C.E.L

Pad has 12 tasks and 26 components, while JDraw has 46

tasks and 103 components. This experiment is conducted

on a desktop equipped with 800 MHz CPU and 512 MB

memory.

The comparison between original waiting time and wait-

ing time after applying our approach is shown in Figure 7.

In this case study, the window size is four. C.E.L Pad and

JDraw are provided 500 KB and 1 MB memory space, re-

spectively. As shown in the figure, the waiting time of C.E.L

Pad and JDraw is reduced by approximately 22% and 41%,

respectively. This implies that our approach effectively re-

duces the waiting time.

7. Discussion

The first issue is the accuracy of the loading and ini-

tialization times. In this study, our formulation described

in Section 4 assumes that the application is provided with

information on the loading and initialization times of the

components. However, it is difficult to provide precise val-

ues of loading and initialization times, because they can

vary due to diverse factors such as the influence of installed

devices (e.g., CPU, hard disks, and memory) and the cur-

rent network throughput. In general, improved hardware

devices provide enhanced performance; however, such de-

vices are more expensive. Further, small devices such as

0
5

10
15
20
25
30

C.E.L Pad JDraw

W
ait

ing
 Ti

me
 (s

)

Original With our approach

Figure 7. The comparison of original waiting

time and the waiting time after applying our
approach.

cellular phones and PDAs have lower computing power;

therefore, complex applications may lead to longer waiting

times. Thus, it is necessary to apply an approach to reducing

the waiting time by overlapping the execution and waiting

(loading and initialization) times.

Our approach assumes two main issues: 1) the applica-

tion can distinguish between different users and 2) each user

executes the application by using similar sequences of tasks.

The first assumption can be realized simply by user manage-

ment of OS. Most OS provide user management functions

and applications that can distinguish the current user. The

second assumption is more complex. Several studies advo-

cate that it is possible to identify the user’s preference or

profile of application usage. This implies that the applica-

tion can anticipate a possible set of functions. However,

this does not mean that it is possible to predict the future se-

quence of the user’s tasks. Thus, it is necessary to conduct

an in-depth study for usage sequences.

The window size is a crucial variable to precisely and

efficiently anticipate the next subsequent task and use the

specified memory space for the application. The experiment

described in Section 6.1 shows that a larger window size im-

proves the prediction accuracy; however, a larger window

size decreases the memory-usage efficiency. Therefore, it is

necessary to search for an optimal window size. An optimal

window size for an application depends on the size of the

given memory space, the number of tasks and components,

and the consistency of usage history. Thus, it is difficult

to search for the best window size for each application and

each user. A possible approach to determine an appropriate

window size is to investigate various users’ usage history

and adaptively specify the window size based on the con-

sistency of the history. In other words, if the user history is

highly consistent, then a small window size should be cho-

sen; otherwise, a larger window size should be chosen.

449

In this study, the basic idea of our approach is to over-

lap the user’s task-execution time and waiting time. This

idea can be improved when the system provides a multi-

core processor. If the application exploits a multi-core pro-

cessor, it can physically overlap the execution and waiting

times. Although a single core processor can perform the

same overlap (because loading is more relevant to I/O time),

execution and initialization times cannot be physically and

fully overlapped in a single-core context. Fortunately, con-

temporary PCs (most desktops and a large number of lap-

tops) have multi-core processors.

8. Conclusion and Future Work

Long waiting times elicit adverse reactions from users.

Although the power of computing devices is increasing,

software applications still take significant time to load and

initialize their functions, because their requirements for

computing power also are increasing. The user’s negative

response to long waiting times may decrease user satisfac-

tion.

Decreasing the waiting time of an application is not sim-

ple. The waiting time comprises the loading and initializa-

tion times of components; therefore, it is difficult to opti-

mize the time required to prepare the execution of compo-

nents. Therefore, our approach overlaps the waiting and

execution times to reduce the user’s waiting time. This ap-

proach is implemented by anticipating the user’s subsequent

tasks. Then, it prefetches components of the predicted tasks.

The evaluation of our approach shows that an appropri-

ate prediction can reduce the waiting time. It is important

not to take excessive time to anticipate subsequent tasks

because time-consuming prediction leads to increasing the

waiting time. The prediction algorithm of our approach an-

ticipates subsequent tasks from the user’s task history in a

short time, even though it has a high miss ratio with small

window sizes. Further, case studies show that our approach

can be used in practical applications.

Further improvements include the determination of an

appropriate task, task architecture, and component size for

an application. These sizes influence the performance of

our approach. Excessively small sizes may lead to greater

prediction complexity. Larger sizes may lead to the perfor-

mance degradation of our approach. Therefore, it is impor-

tant to divide tasks and components into appropriate sizes.

References

[1] B. Bailey. Acceptable computer response times, April 2001.

[2] P. Cao and S. Irani. Greedydual-size: A cost-aware www

proxy caching algorithm. In In 2nd Web Caching Workshop,

1997.

[3] C.E.L. Pad. http://sourceforge.net/projects/cel-pad/.

[4] D. Garlan, S.-W. Cheng, A.-C. Huang, B. R. Schmerl, and

P. Steenkiste. Rainbow: Architecture-based self-adaptation

with reusable infrastructure. IEEE Computer, 37(10):46–54,

2004.
[5] J. A. Hoxmeier and C. DiCesare. System response time and

user satisfaction: an experimental study of browser-based

applications. In Proceedings of the Americas Conference on

Information Systems, 10-13 August 2000 (Long Beach, Cal-

ifornia: Association for Information Systems), pages 140–

145, 2000.
[6] JDraw. http://jdraw.sourceforge.net/index.php.
[7] A. Leung, S. Morisson, M. Wringe, and Y. Zou. Developing

an adaptive user interface in eclipse. In Proc. the Eclipse

Technology eXchange Workshop at European Conference on

Object Oriented Programming, Nantes, France, July 2006.
[8] J. Magee and J. Kramer. Dynamic structure in software ar-

chitectures. In SIGSOFT ’96: Proceedings of the 4th ACM

SIGSOFT symposium on Foundations of software engineer-

ing, pages 3–14, New York, NY, USA, 1996. ACM.
[9] N. Megiddo and D. S. Modha. ARC: A self-tuning, low

overhead replacement cache. In In Proceedings of the 2003

Conference on File and Storage Technologies (FAST), pages

115–130, 2003.
[10] R. B. Miller. Response time in man-computer conversational

transactions. In AFIPS ’68 (Fall, part I): Proceedings of the

December 9-11, 1968, fall joint computer conference, part

I, pages 267–277, New York, NY, USA, 1968. ACM.
[11] A. W. Moore. Cross-validation, 2005.
[12] F. F.-H. Nah. A study on tolerable waiting time: how long

are web users willing to wait. Behaviour and Information

Technology, 23(3):153–163, 2004.
[13] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1994.
[14] J. Nielsen. Guidelines for multimedia on the web. World

Wide Web J., 2(1):157–162, 1997.
[15] J. Nielsen. The need for speed, March 1997.
[16] J. Nielsen. User interface directions for the web. Commun.

ACM, 42(1):65–72, 1999.
[17] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,

G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum,

and A. L. Wolf. An architecture-based approach to self-

adaptive software. IEEE Intelligent Systems, 14(3):54–62,

1999.
[18] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-

based runtime software evolution. In ICSE ’98: Proceedings

of the 20th international conference on Software engineer-

ing, pages 177–186, Washington, DC, USA, 1998. IEEE

Computer Society.
[19] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing pre-

dictability of cache replacement policies. Real-Time Syst.,

37(2):99–122, 2007.
[20] S. Schiaffino and A. Amandi. User - interface agent in-

teraction: personalization issues. International Journal of

Human-Computer Studies, 60(1):129 – 148, 2004.
[21] S. N. Schiaffino and A. Amandi. Polite personal agents.

IEEE Intelligent Systems, 21(1):12–19, 2006.
[22] M. Shaw and D. Garlan. Software Architecture: Perspectives

on an Emerging Discipline. Prentice Hall, 1996.
[23] B. Shneiderman. Response time and display rate in hu-

man performance with computers. ACM Comput. Surv.,

16(3):265–285, 1984.

450

[24] D. S. Weld, C. Anderson, P. Domingos, O. Etzioni, K. Gajos,

T. Lau, and S. Wolfman. Automatically personalizing user

interfaces. In In IJCAI03, pages 1613–1619, 2003.

[25] I. H. Witten and E. Frank. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, second

edition, 2005.

[26] Zona Research Report. The need for speed, July 1999.

451

