
Software Engineering Education Toolkit for Embedded Software
Architecture Design Methodology Using Robotic Systems∗

Dongsun Kim, Suntae Kim, Seokhwan Kim, and Sooyong Park
Department of Computer Science and Engineering, Sogang University,

Shinsoo-dong, Mapo-Gu, Seoul, Korea
darkrsw@sogang.ac.kr, jipsin08@sogang.ac.kr, goatkhan@gmail.com, sypark@sogang.ac.kr

Abstract

Recently, industries need more effective software en-
gineering education for undergraduate students as soft-
ware plays an increasingly important role in consumer
products. Specifically, the manufacturing industry em-
phasizes overall experience with software development
processes from requirements to implementation in em-
bedded software development. This paper proposes an
educational toolkit focusing on architecture design
methodology for embedded software and reports
experience with teaching software engineering by using
the toolkit. The toolkit has several tools that support
methodology education. The toolkit consists of three
perspectives: people, process, and technology. Each
perspective represents a set of tools which can support
educational activities. Particularly, the toolkit intro-
duces LEGO MindStorms NXT as a robotic system
to provide experiences with embedded software develop-
ment, and visible and tangible course materials. We
have conducted a case study based on the toolkit in
undergraduate-level classes. The case study shows the
toolkit can be successfully applied in undergraduate-
level software engineering education.

1. Introduction

Since software has a key role in not only enterprise
systems but also consumer products including cellular
phones, robotic systems, and televisions, the manufac-
turing industry increasingly realizes the importance of
software engineering. Hence, companies are eager to
hire engineers who are educated in software engineer-

∗This paper was performed for the Intelligent Robotics De-
velopment Program, one of the 21st Century Frontier R&D Pro-
grams funded by the Ministry of Commerce, Industry and En-
ergy of Korea.

ing. Also, they request more systematic and practi-
cal education programs for software engineers to edu-
cators in academies, especially in undergraduate-level
education. In addition, as consumer products have
more complex software systems, they need an educa-
tional program which teaches more specific knowledge
which includes theoretical bases and practical experi-
ences for embedded software development because em-
bedded software development is very different from reg-
ular software development[7].

The current software engineering education, how-
ever, does not satisfy industrial needs. In addition to
experiences on embedded software, the industry also
requires actual experiences with the entire software
life cycle including requirements analysis, architecture,
detailed design, implementation, testing, and mainte-
nance. However, teaching all those topics requires long
time and high cost. Since this paper does not discuss
a curriculum which covers two or three year courses
design, we consider teaching architecture construction
and implementation of embedded software. These ac-
tivities can be covered by one semester course and
can satisfy key requirements from industries. Hence,
this paper focuses on teaching architectural design
methodology for embedded software which covers re-
quirements analysis, architecture, detailed design and
implementation because those are a set of key activities
in software development and most software engineering
courses concentrate to teach these activities.

Teaching a software design method requires addi-
tional course materials. First, a term project must be
introduced to lead the course because consistent and
consecutive examples in the same context are needed
to effectively teach a design method. The project must
deal with quasi-realistic software development, espe-
cially about embedded software. The second necessary
material is someone who can guide students not to seri-
ously mislead the project or misunderstand the design
method. This is important because consecutive activ-

2008 15th Asia-Pacific Software Engineering Conference

1530-1362/08 $25.00 © 2008 IEEE

DOI 10.1109/APSEC.2008.58

317

TechnologyNXT, GARDIAN, StarUML

Term
Project

Lecture(Theory & Practice)

Figure 1. The Proposed Software Engineer-
ing Education Toolkit

ities in a design method are very relevant and wrong
decisions in the early stage may lead to catastrophic re-
sults. Another one is teamwork in which students can
discuss and debate their design decisions in software
development. It is necessary to offer an opportunity
to experience teamwork in software engineering courses
because software development based on design method-
ology needs coordination of various stakeholders and
cooperation of diverse software developers. These addi-
tional materials can support to teach a software design
method.

In order to support software engineering education
that satisfies the above requirements and constraints,
this paper proposes an educational toolkit which con-
sists of five materials as shown in Figure 1. Basically,
lectures are provided to the students as a foundation.
On this foundation, three types of tools are provided to
support practical activities of the students. The ‘Peo-
ple’ tools are mentoring which prevents the students
from misunderstanding, and teamwork which provides
experiences of cooperation. The ‘Process’ tools are
COMET(Concurrent Object Modeling and architec-
tural design mEThod)[3] as software design methodol-
ogy for embedded software which is the main focus of
the toolkit and PSP/TSP which provides experiences
of systematic software development. The ‘Technol-
ogy’ tools are LEGO MindStorms NXT[8] which pro-
vides experience with developing embedded software
systems, GARDIAN(see Section 2.2) which helps stu-
dents identify defects in design models, and StarUML
which is a modeling tool. A term project organizes

lectures and tools altogether by connecting theory and
practice. Using this toolkit, we expect that instructors
who have difficulties in software engineering education
can teach their students more effectively and students
can learn software engineering more actively.

The rest of the paper is organized as follows: Sec-
tion 2 presents the key aspects of the toolkit design.
Section 3 briefly describes a case in which we applied
the toolkit to a course in the spring of 2007. Section
4 presents the lessons learned throughout developing
and applying the toolkit. The paper concludes with
overviews of future work.

2. Toolkit Design

The major perspectives of software development are
people, technology and process[4]. These perspectives
for software development can be naturally applied
into software engineering education. Our toolkit for
software engineering education accordingly consists of
three major perspectives:

• People - Mentoring, Teamwork

• Technology - GARDIAN, StarUML, H/W Sys-
tem(LEGO MindStorms NXT)

• Process - COMET, PSP/TSP

The people perspective helps students avoid catas-
trophic decisions and learn how to cooperate with
stakeholders. The technology perspective supports
them to produce software models and implementa-
tions and provides development environments. The
process perspective guide students through a series of
recommended activities to successful software develop-
ment. Also, the toolkit contains a term project. In the
software engineering course driven by the toolkit, the
project is the main driver which orchestrates the three
perspectives. Through the project students can expe-
rience software development activities sequentially and
systematically. Lectures which covers theory and prac-
tice of software engineering teach the content of soft-
ware engineering activities and how to use the toolkit.
The rest of this section illustrates the toolkit in detail
and provides rationale why the toolkit is composed by
those tools shown in Figure 1.

2.1. People

Mentoring[13] is one of the proven methods to effec-
tively guide a less experienced person in a new field.

318

The main goal of mentoring in the course is to prevent
the students from being confused during the project
but without giving them solutions on the project. Pre-
vious courses[2, 1] in other universities adopted tech-
nical staffs or developers from the software industry.
Those people can be effective because they guide the
activities of design methodology the students follow
and give experience from actual practices in industries.
However, it is hard to find multiple numbers of volun-
teer mentors with expertise who can sacrifice their time
for students. Hiring mentors is, also, not feasible be-
cause it costs more than the course can pay for classes.
Hence, we decide that adopting experts from the soft-
ware industry is not an option in this toolkit.

Another option is that graduate students support
the (undergraduate) students in the course. Although
they have not much knowledge and experience than
experts from industries, they have theoretical knowl-
edge more than basic software engineering knowledge
and practical experience in software development from
research projects, and can support undergraduate stu-
dents with low cost. Hence, in this toolkit, graduate
students who have software engineering knowledge take
part in the course as a mentor.

Mentors are divided into two groups: several nor-
mal mentors and a super-mentor. A super-mentor is
a mentor of mentors. The super-mentor is responsible
for leading other normal mentors and establishing the
direction of mentoring. The super-mentor educates the
normal mentors several times for the course. Normal
mentors are assigned into a team composed of under-
graduate students who take the course, and guide the
team. Normal mentors play a role who directly inter-
acts with their assigned team, and responds to their
questions on the project. By means of the mentoring
system, undergraduate students resolve their questions
on the project. Additionally, the mentors deliver di-
verse experiences in practical software development to
them via the project.

Teamwork becomes one of the essential factors for
developing the large-scale software. The project in soft-
ware engineering education needs to be conducted by
teams to meet the trend of software development. Each
team consists of 4∼6 team members and they elect one
of them as team leader. The role of the team leader
is to orchestrate team members and communicate with
their mentor. In addition to the team leader, there is a
GARDIAN(see Section 2.2) tool operator. The opera-
tor have a role to evaluate the UML model of the team.
The rest team members of the team take responsibili-
ties based on work assignment the team leader does.

Teamwork is not a physical tool which can support
development activities and a person who can directly

help students. Rather than a physical tool, it is a vir-
tual tool which can support effective execution of de-
sign activities based on collaboration of team members.
To teach teamwork in the course, lecturers should teach
work breakdown, assignment, and planning which are
not specifically explained in design methodology but
those are crucial knowledge for effective software de-
velopment with design methodology.

2.2. Technology

LEGO MindStorms NXT[8] is adopted in order to
tackle the invisibility of software and stimulate the stu-
dents’ interest in software engineering. LEGO Mind-
Storms NXT is a programmable robotics kit released
by LEGO in July 2006. The kit consists of 519 tech-
nic pieces, three servo motors, four sensors (ultrasonic,
sound, touch, light), seven wires, a USB cable, and the
NXT brick (a control unit).

The reasons why NXT is chosen as a hardware en-
vironment are low cost and ease of use. There are
several alternatives for the hardware environment such
LEGO MindStroms RCX[9], Sony AIBO[15], and vir-
tual robot simulators (e.g. Karel[12]). In terms of
cost, AIBO, RCX, and NXT have reasonable price
(from $300∼$600), but Sony declared they discontinue
the sales of AIBO and LEGO is focusing on support-
ing NXT rather than RCX because RCX is a previ-
ous version of NXT and NXT is the latest version
of LEGO robot platforms. Robot simulators are ex-
tremely cheaper than other hardware-based platforms,
but they are not tangible and provide only limited char-
acteristics of embedded systems development.

On the other hand, NXT is not expensive (around
$300 per package), has various functionalities (rota-
tional motors, several sensors). Also, it is easy to
control its actuators and sensors because basically
NXT provides a bundle control program based on
LabView[10] which is a simple and visual-based pro-
gramming environment and there are several third
party control drivers in various programming languages
such as Java, C++, and C# which support easy con-
trol for actuators and sensors. Another advantage of
NXT is that it can be assembled in various form. Since
it provides 519 technic pieces, sensors, and actuators,
students can make thousands of robot models based
on NXT. This fact is very important because it can
prevent cheat by memory dumps of previous courses
using the same toolkit. Based on these advantages,
the toolkit adopts NXT as a hardware platform.

Selecting an appropriate UML modeling tool is one
of the essential factors for a successful project. Like-
wise, providing an appropriate UML modeling tool to

319

students in the course is crucial. Requirements for the
modeling tool are low price (or freeware), UML profile
support, Korean language support, and easy documen-
tation. Several commercial modeling tools[14, 17] sup-
port various and custom UML profiles, multi-language
(especially asian languages), and rich documentation,
but those are too expensive to be adopted in university
courses. There are educational versions of the commer-
cial tools which is less expensive than general versions,
but those are still expensive for universities to pay
charge every year. There are non-commercial modeling
tools[11, 18] which are freeware, but some of them can-
not support custom UML profiles, Korean language, or
easy documentation. Hence, StarUML[16] is selected
as a modeling tool in this toolkit since its manipula-
tion is easy and it is also freeware. StarUML provides
an approach profile which can define the steps and di-
agrams of COMET and support Korean language.

COMET[3] provides design guidelines to identify
and refine objects of the software system by using vari-
ous UML diagrams and specifies rules in modeling soft-
ware systems. Those rules represents how objects and
devices have to interact with each other. For example,
a message between a sensor device and a controller
should be passed from the sensor device to the con-
troller. The toolkit provides a rule checker called GAR-
DIAN which can automatically detect syntactic and se-
mantic anomalies in design models. GARDIAN is im-
plemented based on XML Metadata Interchange (XMI)
to decipher model files generated by StarUML. GAR-
DIAN helps the students to check whether their model
observes the guidelines of COMET. GARDIAN sup-
ports rule syntax for the experts of the design method
to specify the knowledge on the design guidelines, and
the rule engine to evaluate designers’ model according
to the pre-described knowledge as depicted in Figure 2.
It generates the guideline violation reports which de-
scribe which model elements violated the design guide-
line and the reason why it was violated. Students can
modify their model based on the guideline violation
report, and decrease the number of defects in it.

2.3. Process

Since COMET provides richer and more specific
guidelines to design real-time, embedded and dis-
tributed applications than other general purpose soft-
ware design methods and development process models
such as waterfall model, spiral model, Open Unified
Process, and Rational Unified Process this method is
adopted in the toolkit. The goal of the project is to
develop a robot software system which controls several
sensors, and actuators in NXT hardware. The method

Figure 2. A Snapshot of GARDIAN

is partially modified after due consideration of the char-
acteristics of the target software system. There ex-
ists diverse steps including use case modeling, analysis
modeling, architectural design, task structuring, and
detailed design in COMET. Among those steps the ar-
chitectural design is skipped because the target system
of the project1 has one subsystem. The project more
focuses on requirements engineering, analysis model-
ing, and task structuring instead of the architectural
design.

In the use case modeling step, students elicit fun-
damental requirements of the software system in the
embedded system. The analysis modeling step has
two sub steps: static modeling and dynamic modeling.
Static modeling focuses on the relationship of external
I/O devices with the software system, and entities and
objects in the system. Dynamic modeling focuses on
state transitions of the system from the initial state
to the final state and sequential interactions between
objects identified in static modeling. In the task struc-
turing step, students must identify tasks which are con-
current execution units in the system. In the detailed
design step, students must revise and elaborate the pre-
vious models in order to implement actual embedded
software.

Additionally, the data of PSP/TSP[5, 6] is compiled
to measure the time they spent for the project. PSP
and TSP is a quantified method aimed to the improve-
ment of the quality and productivity of personal and

1The problem description used in the toolkit can be
downloaded from ‘http://seapp.sogang.ac.kr:8080/RPS
Problem Statement.pdf’

320

team work. It requires students’ extra-effort to col-
lect the data. However, this technique is one of the
most useful and easiest techniques for which they can
measure the time they spent doing something. Based
on the collected data, they can elaborate their previ-
ous work assignment and replan consecutive activities
more efficiently. Thus, this can help students manage
their time to execute design activities of COMET and
support to achieve a successful project.

3. Case Study

This section describes a case study performed as an
undergraduate course in the spring of 2007. The sec-
tion focuses on the actual application of the proposed
toolkit described in Section 2 and the effectiveness of
the toolkit in the course. The course was thirteen weeks
except for mid and final term exams. Each week had
two classes and each class was an hour and half hour.
Forty six students took the course and most of them
were juniors or seniors who are majoring in computer
science and engineering. The students organized teams
of 4∼6 members before midterm exam. Eight teams
were organized and each team elected one of the team
members as a leader. The leader was responsible for
communicating with a mentor, guiding team members,
managing team schedules, and so on.

The lectures consisted of an introduction to soft-
ware engineering, team organizing(1∼4 week), steps of
COMET, RPS H/W assembly(by using LEGO Mind-
Storms NXT), programming on NXT, PSP/TSP us-
age, GARDIAN framework usage and StarUML(5∼13
week), and presentations about the outcomes of
students(14∼15 week). In weeks 5∼13, one class a
week dealt with theoretical aspects of COMET, and
another class dealt with practice time using COMET
and the usage of tools and NXT. Classes through weeks
5∼13 were bases of the term project. The term project
started just after the midterm exam.

The requirements description(problem state-
ment) of the term project was provided
to the students(it can be downloaded from
‘http://seapp.sogang.ac.kr:8080/RPS Problem
Statement.pdf’). The target system of the project
was RPS(Robot Patrol System) which patrols between
two locations. If an intruder is detected, then the
system gives the alarm. When the intruder disappears
or is removed, the system turns off the alarm and
patrols again. The students assembled the hardware
structure of RPS by using NXT blocks. To help
assembly, we provided a movie clip which showed a
assembly process.

The students modeled the software system of RPS

using COMET. They used StarUML as a modeling
tool. For each activity, they drew diagrams and wrote
documents. They used GARDIAN to check out their
models whether the models observed the guidelines of
COMET. They submitted the outcomes at the end
of every activity. Based on the outcomes(diagrams
and documents), they implemented the software sys-
tem of RPS. Communication between NXTs and desk-
top PCs was established by Bluetooth. We pro-
vided device drivers to control sensors and actuators
of NXT through Bluetooth communication in C# lan-
guage. By using these drivers, they could easily imple-
ment the software system reflecting models they doc-
umented. The final deliverables they produced were
diagrams(including a use case diagram, a conceptual
static model, a system context class diagram, an object
structure, a state diagram, a collaboration diagram, a
subsystem collaboration diagram, a subsystem concur-
rent collaboration diagram, a task structure, and a task
clustering diagram), documents describing diagrams,
and source code files of RPS.

Mentoring supported teams to perform the term
project correctly. Mentors were graduate students ma-
joring in software engineering at Sogang University.
One mentor advised one team. The roles of mentors
are listed as follows: 1. Maintain students enthusi-
asim throughout the course, 2. Infuse desires into all
team members to participate actively in their project,
3. Help students quench their curiosity or solve diffi-
cult parts in the progression of the project. However,
do not bring up a solution, 4. Act as a guide for them to
solve problems themselves, 5. Give advice for troubles
or worries. Mentors had project meetings for a mini-
mum of once a week with their teams. During mentor
meeting(of mentors and the super-mentor) every week,
mentors reported the situations of their team to the
super-mentor. Through mentor meetings future plans
were also discussed.

The students recorded their effort for each step in
the project by using the given PSP/TSP sheet. Every
team member recorded his/her efforts on a personal
sheet. The team leader aggregated the personal sheets
of the team and recorded them in a team sheet, and
reported it to the super-mentor. Some teams exploited
the results to anticipate the efforts of the next stage
but some other teams did not at all.

The project was evaluated based on criteria of 70%
of their outcomes and 30% of their presentation. Every
team presented their diagrams, documents, and their
system. Each team had fifteen minutes for the presen-
tation. Also all mentors participated in the presenta-
tions and gave comments about the overall evaluation
of the team. After the presentations we selected three

321

outstanding teams in order to encourage participation.

4. Lessons Learned

After the course described in Section 3, we had inter-
views with the students to verify the effectiveness of the
toolkit in the course. The interviews consisted of ques-
tions about the effectiveness of the lectures, the term
project, the tools, and overall opinions of the course.
The interviews were conducted for each team around
thirty minutes. Before the interviews, we gave them
survey sheets and let them discuss the effectiveness of
the course for a week and record their opinions on the
sheets. The sheet has twelve questions and we asked
them to record scores based on five-level Likert scale
(1: Strongly disagree, 2: Disagree, 3: Neither agree nor
disagree, 4: Agree, 5: Strongly agree). The result of
the survey sheets is shown in Table 1 and 22. Then, we
had a discussion with them based on the sheet. The
rest of this section qualitatively discusses the effective-
ness of the course and toolkit based on quantitative
results of the sheet

The survey sheet on lectures comprised questions
about both the lectures on software engineering the-
ories (Table 1) and those of practice (Table 2). The
students said that the lectures about theories, espe-
cially about COMET, were great because those showed
the overall software development process at a glance.
In other words, they didn’t have a chance to develop
complete software systems that included activities from
requirements analysis to maintenance but only had a
chance to implement small pieces of programs that con-
tain functions of specific technologies such as artificial
intelligence and operating systems. Hence, the lec-
tures on methodology were impressive and gave ideas
for software development.

We asked about how effective COMET is for the
project. The students said it was good but some prob-
lems for each step must be addressed. They discussed
that the use cases modeling helped them know the out-
line and boundary of the system, and set the start line
of the project based on scenarios. However, some of
them said that there was not enough explanation of use
cases and actors so they had some difficulties in mod-
eling use cases and actors. As shown in the average
score of question #1 in Table 1, the students thought
use case modeling was hard to understand but, posi-
tively, the average score of question #2 indicated they
thought they could apply what they had learned.

The students said that static modeling supported
the idea that they could have a more specific struc-

2In each question, we represent only the average score of eight
teams due to space limitation.

Question Average
1. How well do you understand Use
Case Modeling?

3.38

2. How well can you apply Use Case
Modeling in practice?

4.13

3. How well do you understand
Static Modeling?

3.63

4. How well can you apply Static
Modeling in practice?

4.00

5. How well do you understand Dy-
namic Modeling?

4.00

6. How well can you apply Dynamic
Modeling in practice?

4.00

7. How well do you understand Task
Structuring?

3.25

8. How well can you apply Task
Structuring in practice?

3.25

Table 1. Survey results #1

tural view of the system than use cases. However,
some students said that it was hard to identify objects
and system structures only based on requirements and
use cases without actual executable code because they
were used to implementing software directly by a pro-
gramming source code. Also some teams complained
that they didn’t know the inter-relationship between
use cases and static models. In spite of complaints,
they gave more positive scores than the scores of use
case modeling because static modeling was more famil-
iar and was more close to coding.

In dynamic modeling, the students could understand
overall behavior and data flows of the system. The av-
erage scores of question #5 and #6 reflect their positive
opinions. However, they stated that the collaboration
diagram of the system was complex and unreadable
even though there were only a few objects in the di-
agrams. Some collaboration diagrams of some teams
were very hard to traverse and modify because of com-
plexity. This fact can be a reason for inventing a more
efficient model of software behavior.

They said that task modeling helped them identify
concurrent behavior and structures of the systems so
that they could perform a detailed design more easily.
On the other hand, a few teams had problems with
task structuring. For example, they first implemented
an executable partial code for the systems. Then, they
observed the code and extracted tasks reversely. This
was not the way the course was intended to go. The
reason why question #7 and #8 had the lowest scores
of other questions was the course did not have enough

322

Question Average
9. How effective does the use of
LEGO MindStorms NXT encour-
age you in focusing on the course
in terms of attractiveness, visibility,
and tangibility?

4.25

10. How well does teamwork sup-
port the course?

4.00

11. How well do PSP/TSP sheets
support your time management?

3.25

12. How effective do mentors sup-
port your project?

3.5

Table 2. Survey results #2

time to teach task structuring so they could not under-
stand enough.

Students’ overall evaluation for COMET was good,
because they could experience software development
from requirements to implementation(or maintenance
for some teams). Various perspectives of software mod-
eling prevented them from misdirecting the project in
a wrong way such as spaghetti code which is not read-
able, not modifiable, and complicated. Also the process
taught them to have insights into systematic software
development. In spite of the positive opinions, there
were problems such as we could not invest enough time
to teach unfamiliar concepts as mentioned above and
could not make more examples which could help them
make better models. To improve, we need to orga-
nize the lectures more compactly and precisely to be
able to teach within a semester. We also need to make
more examples that provide various characteristics of
embedded software.

The survey on the toolkit focused on how effective
it was and what was the problem. The students stated
LEGO MindStorms NXT was remarkable because it
made the course possible to experience how embed-
ded software development proceed and to see how the
system that they developed interacted with H/W and
operating environments. Specifically, it was impres-
sive that software systems are not affected simply by
computing resources or algorithms, but also by factors
in real world such as a gradient, friction, and radio
frequency and that the course showed how they can
analyze and resolve it. Also it helped to understand
the characteristics of embedded software such as time-
liness, concurrency, liveness, and reactivity. Overall
positive opinion of the students was shown in the re-
sult of question #9 in Table 2.

The students said teamwork was basically good as
shown in question #10 in Table 2, but also there was

a problem. They said they could learn how to commu-
nicate with team members, how to break down work,
and how to integrate the results by teamwork. They
said teamwork was helpful to learn how to solve com-
plex problems in software development by cooperation
and it would work in companies after graduation. How-
ever, it was hard for them to divide and distribute work
and to integrate the results without any guidance be-
cause we just helped to organize teams and gave only a
few guidelines for teamwork. They usually developed
software alone so dividing and assigning work to an
appropriate person was not easy for them.

Collecting data of PSP and TSP sheets helped the
students measure and predict their effort themselves
quantitatively. They were skeptical about collect-
ing data and complained that recoding and tracking
PSP/TSP data was a burden at the beginning. How-
ever, gradually, they made use of the collected data to
anticipate their workload and divide it up into the next
stages. Also, they requested more specific usage of col-
lected data from us. Another complaint in collecting
data was tool support. We just provided a recoding
sheet made by Microsoft Excel so they had problems
in collecting data precisely and sometimes they forgot
time duration or recording itself. This problem was re-
flected in the score of question #11. Hence, we need to
introduce tools for precise recording and teach specific
usage of PSP/TSP.

Mentoring played a very important role for the stu-
dents to perform the project. Even some students
stated that they could not perform the project with-
out their mentor. Although mentors did not give an-
swers, they objectively evaluated the outcomes of the
students and prevented them from misunderstanding
theories and misleading the project. Because faults in
the early stage of software development may propagate
to the next stages, if the faults are found in th out-
comes of the students, then the project may fail due to
the faults. The failure might depress the students and
this may lead to misunderstandings that they might
think software engineering is not important or effective
even though they misunderstood using theories prop-
erly. Fortunately, with mentors, they could have the
right conception of software engineering.

On the other hand, mentoring had a set of prob-
lems such as the students complained about knowledge
differences between mentors. This led to unfair help
and it even might have an affect on students’ grades.
The reason why the situation happened was there was
not enough communication between mentors, and be-
tween mentors and the supermentor. Another problem
was mentors did not spend equal time with their team.
Hence, they didn’t give many high scores to the men-

323

toring as shown in question #12 in Table 2. To provide
better mentoring, we need to improve and enhance the
education of mentors, to have more frequent mentor
meetings, and to enforce more time slots for mentor
meetings in the course schedule.

Applying the StarUML tool and the GARDIAN pos-
itively supported this project process. StarUML as
open software can be downloaded and installed with-
out cost. Thus, it was an appropriate choice for under-
graduate education. GARDIAN has a set of syntactical
and semantic rules for checking common mistakes the
student can make. Thus, GARDIAN contributed to
improving the quality of their models without being
time consuming. Some students who used GARDIAN
said they could not make high quality models without
GARDIAN because COMET has a lot of semantic and
syntactical rules compared with general UML models.

5. Conclusions

This paper has listed the requirements of software
engineering education from the industry. Based on the
requirements, this paper has presented the software en-
gineering education toolkit which focuses on teaching
architecture design methodology for embedded soft-
ware. The described toolkit consists of lectures, a term
project, and three types of tools. Those tools support
students to learn software design activities in various
perspectives. We have conducted a case study to eval-
uate the toolkit in the context of an undergraduate
class. The case study has shown the effectiveness of
the toolkit in terms of industrial requirements within
time and resource constraints. At the same time, from
the case study we have recognized a number of is-
sues which need improvement. Our future work will
span issues such as improving mentor education, orga-
nizing lecture schedules more efficiently, expanding to
other programming languages, and emphasizing use of
PSP/TSP sheets.

References

[1] D. Garlan, D. P. Gluch, J. E. Tomayko, Agents of
change: Educating software engineering leaders,
IEEE Computer 30 (11) (1997) 59–65.

[2] N. E. Gibbs, The sei education program: the chal-
lenge of teaching future software engineers, Com-
mun. ACM 32 (5) (1989) 594–605.

[3] H. Gomaa, Designing Concurrent, Distributed,
and Real-Time Applications with UML, Addison-
Wesley, 2000.

[4] T. B. Hilburn, Software engineering education: A
modest proposal, IEEE Software 14 (6) (1997) 44–
48.

[5] W. S. Humphrey, Introduction to the Team Soft-
ware Process, Addison-Wesley, 2000.

[6] W. S. Humphrey, PSP: A Self-Improvement
Process for Software Engineers, Addison-Wesley,
2005.

[7] E. A. Lee, Embedded software, Advances in Com-
puters 56 (2002) 56–97.

[8] Lego MindStorms NXT, http://mindstorms.lego.
com/ (2007).

[9] Lego MindStorms RCX, http://www.lego.com/
eng/education/mindstorms/home.asp?pagename
=rcx (2008).

[10] NI LabView, http://www.ni.com/labview/
(2008).

[11] Papyrus UML, http://www.papyrusuml.org/scripts/
home/publigen/content/templates/show.asp
?l=en&p=55&vticker=alleza&itemid=3 (2008).

[12] R. E. Pattis, Karel the Robot: A Gentle Intro-
duction to the Art of Programming, John Wiley
& Sons, Inc., New York, 1994.

[13] R. Ramaswamy, Mentoring object-oriented
projects, IEEE Software 18 (3) (2001) 36–40.

[14] Rational Software Architect, http://www-306.
ibm.com/software/awdtools/architect/swarchitect/
(2008).

[15] Sony AIBO, http://support.sony-europe.com/
aibo/index.asp (2006).

[16] StarUML, http://staruml.sourceforge.net/en/
(2007).

[17] Together, http://www.borland.com/us/products/
together/index.html (2008).

[18] Violet UML Editor, http://alexdp.free.
fr/violetumleditor/page.php?id=en:tour (2008).

324

