
Poracle: Testing Patches Under Preservation Conditions to Combat the
Overfiting Problem of Program Repair

ELKHAN ISMAYILZADA, UNIST, South Korea

MDMAZBA UR RAHMAN, UNIST, South Korea

DONGSUN KIM, Kyungpook National University, South Korea

JOOYONG YI∗, UNIST, South Korea

To date, the users of test-driven program repair tools sufer from the overitting problem; a generated patch may pass all

available tests without being correct. In the existing work, users are treated as merely passive consumers of the tests. However,

what if they are willing to modify the test to better assess the patches obtained from a repair tool? In this work, we propose

a novel semi-automatic patch-classiication methodology named Poracle. Our key contributions are three-fold. First, we

design a novel lightweight speciication method that reuses the existing test. Speciically, the users extend the existing failing

test with a preservation conditionÐthe condition under which the patched and pre-patched versions should produce the same

output. Second, we develop a fuzzer that performs diferential fuzzing with a test containing a preservation condition. Once

we ind an input that satisies a speciied preservation condition but produces diferent outputs between the patched and

pre-patched versions, we classify the patch as incorrect with high conidence. We show that our approach is more efective

than the four state-of-the-art patch classiication approaches. Lastly, we show through a user study that the users ind our

semi-automatic patch assessment method more efective and preferable than the manual assessment.

CCS Concepts: · Software and its engineering→ Software testing and debugging; Automatic programming.

Additional Key Words and Phrases: Automated Program Repair, Overitting Problem, Patch Validation, Patch Classiication,

Preservation Condition

1 INTRODUCTION

Automated program repair (APR) techniques [18, 24, 26, 32, 33] have been developed extensively over the last
decade. In particular, the generate-and-validate (G&V) approaches have gained wide popularity. A patch candidate
�� generated in the irst step is validated in the second step (see Figure 1), typically with a user-given test suite.
If �� passes all tests, many APR systems stop the repair process and show �� to the user. However, there is no
guarantee that �� is a correct patch; �� may merely pass all tests without being correct, which is often regarded as
a plausible but incorrect patch. This problem is called an overitting problem in the APR literature [36, 46, 51, 60].1

To overcome the overitting problem, many recent APR systems generate a list of plausible (i.e., test-suite-
passing) patches (instead of a single patch) so that a correct patch existing in the patch space is not missed

∗Corresponding author.
1Although the term łoverittingž was originated from machine learning vocabulary, an APR system usually does not use held-out tests.

Typically, all available tests are provided to an APR system. In the APR literature, an overrating patch is often used as a synonym of an

incorrect patch.

Authors’ addresses: Elkhan Ismayilzada, elkhan@unist.ac.kr, UNIST, South Korea; MdMazba Ur Rahman, UNIST, South Korea, mazbaur@unist.

ac.kr; Dongsun Kim, Kyungpook National University, South Korea, darkrsw@knu.ac.kr; Jooyong Yi, UNIST, South Korea, jooyong@unist.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/9-ART $15.00

https://doi.org/10.1145/3625293

ACM Trans. Softw. Eng. Methodol.

HTTPS://ORCID.ORG/0000-0002-1473-3702
HTTPS://ORCID.ORG/0000-0002-3106-4117
HTTPS://ORCID.ORG/0000-0003-0272-6860
HTTPS://ORCID.ORG/0000-0002-7215-0855
https://orcid.org/0000-0002-1473-3702
https://orcid.org/0000-0002-3106-4117
https://orcid.org/0000-0003-0272-6860
https://orcid.org/0000-0002-7215-0855
https://doi.org/10.1145/3625293
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625293&domain=pdf&date_stamp=2023-09-26

2 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

Fig. 1. Three steps used in recent generate-and-validate (G&V) APR tools generating a list of plausible patches,
among which the developer shouldmanually look for a correct patch.

out [4, 11, 12, 22, 53, 54]. In this case, the users should manually look through a list of plausible patches to
ind the correct one. Because a test suite is only an under-constrained speciication, hundreds and sometimes
even thousands of plausible patches are generated [4, 11, 12, 29, 53], and the manual assessment step can take a
long time. While patches can be reviewed2 in the order of their rankings [4, 53], ranking algorithms are often
imprecise, and a correct patch is not necessarily ranked high.

Existing work. Recently, several patch classiication (PC) techniques [11, 49, 56, 59, 60] have been suggested
to ilter out plausible yet incorrect patches, as listed in the irst column of Table 1 in Section 2. These PC techniques
can be broadly classiied into score-based approaches [49, 56, 60] and evidence-based approaches [11, 59]. The
former approaches compute a score of a patch based on various information such as distributed representations
of patches [49] and path spectra of patched and pre-patched (i.e., buggy) versions [56]. The computed score of a
patch is compared with a chosen threshold to make a classiication decision. Meanwhile, the latter approaches use
diferential testing [38, 41, 43] to detect behavioral diferences between pre-patched and patched versions [11, 59].
If the output of the pre-patched version is correct, the observed behavioral diference indicates a regression
error. Since an incorrect patch is rejected only with concrete evidence of a regression error, perfect precision
can be achieved (i.e., a patch classiied as incorrect is indeed incorrect), provided that the discovered behavioral
diference correctly identiies an error. This is the clear advantage of the evidence-based approach over the
score-based approach.

Please note that we deine true positive (��), false positive (��), true negative (��), and false negative (��) as
follows, considering the context of patch classiication.�� refers to an incorrect patch being correctly classiied as
incorrect, while �� refers to a correct patch being errorneously classiied as incorrect. On the other hand,�� and
�� refer to a correct patch being correctly classiied as correct and an incorrect patch being incorrectly classiied as
correct, respectively. Recall (��/(�� + ��)) in our context measures how often incorrect patches are successfully
iltered out, while precision (��/(�� + ��)) measures how often a iltered-out patch is indeed incorrect. These
deinitions of recall and precision are consistent with previous work on patch classiication [49, 51, 56, 60].
Both types of PC techniques have their limitations. For score-based approaches, it is dificult to choose a

threshold that makes recall high (i.e., incorrect patches should be iltered out as much as possible) while keeping
precision close to 100% (i.e., correct patches should not be iltered out) [1]. Meanwhile, evidence-based approaches
sufer from low recall. This is because it is diicult to determine whether a detected output diference between
pre-patched and patched versions is indicative of a regression error, without knowing whether that diference
is intended or not, and to avoid this issue, existing approaches [11, 45, 59] ilter out only patches that result

2We use łreview" and łassess" in an interchangeable way.

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 3

in program crashes.3 As will be shown in this paper, we overcome this limitation by leveraging a lightweight
speciication methodology.

Our viewpoint. The overitting problem of APR occurs because a failing test used by an APR system expresses
only very limited information about change intention. While passing tests can reveal additional user intention,
those tests are prepared without considering a bug at hand. This results in a situation where the user of an APR
system should rely on luck to obtain the correct patch. There is no wonder why APR systems sufer from the
overitting problem!

In this work, we pose the following question: what if the users are willing to express the bug-ixing intention to

better assess the obtained patches? With that question in mind, we suggest a semi-automatic patch-classiication
methodology named Poracle that combines the evidence-based PC technique with a lightweight speciication
methodology. With Poracle, the user can specify the following kind of an assertion in a test.

∀� : whenever � (®�) is satisied, � (®�) = �′ (®�) (1)

where � and �′ refer to a buggy version and its patched version, respectively, and ®� represents the input to �

and �′, including global context such as timezone. We assume that � and �′ are deterministic on ®� and do not
consider laky tests in this work, as commonly assumed in previous work on APR. Meanwhile, � refers to our
novel preservation condition Ð the condition under which program behavior should be preserved between � and
�′. Once the user speciies a preservation condition, Poracle performs diferential fuzzing to search for a value �
violating condition (1); then � is used as evidence to classify �′ incorrect.

Comparison with formal speciication. Incorrect patches generated from APR tools can also be iltered
out using formal speciications, as shown by Nilizadeh et al. [37]; patches that violate the speciication are
considered incorrect. However, writing precise formal speciications is very challenging, as shown by Legunsen
et al. [25]. According to their study, the developers often write imprecise speciications, which results in a large
number of false alarms. To write a precise speciication, the developers need to consider all possible cases, and
should come up with a precise oracle for each case. In contrast, writing a preservation condition is much simpler
since it only requires considering a speciic context in which the bug appears.

Contributions. The main contributions of this work are:

• A novel patch classiication methodology: We propose a novel semi-automatic patch classiication
methodology by combining an evidence-based technique and a lightweight speciication method with
which a preservation condition can be speciied. Please note that our method is not intended to replace the
existing automatic patch classiication techniques. Instead, we provide the developers who prefer to have
control over the patch classiication process with a concept (i.e., preservation condition) and tools they can
use (i.e., APIs to express preservation conditions and a diferential fuzzer).

• Empirical indings: We run Poracle over the 458 patches in our dataset after adding preservation
conditions. Compared with four state-of-the-art PC techniques [49, 56, 59, 60], our approach substantially
outperforms three of them [49, 56, 59] both in recall and precision. While ODS [60] shows better recall than
Poracle, ODS shows the lowest precision among all tools, implying that ODS errorneously rejects correct
patches most frequently. Considering the scarcity of correct patches [29] and the objective of program
repair (i.e., inding a correct patch), rejecting a correct patch is the last thing we want. In contrast, Poracle
shows 99% precision. Our experimental results show that many incorrect patches an APR tool generates
can be iltered out only with a snippet of information provided through a preservation condition (note that a
preservation condition only speciies what should be preserved but does not specify what changes should
be made).

3Vulnerabilities detected by sanitizers such as UBSan and ASan and violation of in-code assertions are considered crashes as well.

ACM Trans. Softw. Eng. Methodol.

4 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

Table 1. Comparison between patch classification (PC) techniques

PC Technique
Filtering No Requires Detectable Allows

Criterion False Positive Threshold Tuning Error Type User Spec

Anti-patterns [47] Anti-patterns ✗ ✗ Anti-patterns ✗

PATCH-SIM [56] Score ✗ ✓ General ✗

Tian et al. [49] Score ✗ ✓ General ✗

ODS [60] Score ✗ ✓ General ✗

Opad [59] Evidence ✓∗ ✗ Crash ✗

Fix2Fit [11] Evidence ✓∗ ✗ Crash ✗

Ours Evidence ✓† ✗ General ✓

∗: Under the assumption that the observed crash of the patched version indicates a regression error.

†: Under the assumption that the user-provided preservation condition is either precise or under-approximate (see

Section 5.2.1).

• Reduction in manual patch-review efort: Our work is motivated by the high cost of assessing a large
number of plausible patches. By iltering out incorrect patches, the user only needs to review the remaining
ones. To evaluate this usage scenario, we apply our approach to ranked lists of plausible patches generated
from a state-of-the-art APR tool, JAID [4]. Our experimental results show that the number of patches to
review signiicantly decreases after using our approach (on average, 108 patches/version), while all correct
patches are retained. Note that a single generalized test is used to validate all plausible patches in a ranked

list.

• User study: The result of our user study conducted with 66 participants shows that the users ind the
correct patch more often when Poracle is provided than when manually inding the correct one. Most
participants of our user study preferred the semi-automatic patch assessment using Poracle to the manual
assessment.

• Replication package: We provide a replication package in the following URL:

https://github.com/UNIST-LOFT/poracle.

Our package contains all generalized tests covering 458 patches and our custom fuzzer supporting our
novel preservation conditions.

2 BACKGROUND AND RELATED WORK

2.1 Automated Program Repair (APR)

The goal of automated program repair (APR) is to automatically generate a patch that ixes a given bug. Over the
past decade, diverse APR techniques have been developed. Some techniques [12, 24] randomly mutate the given
buggy program under the guidance of a test suite�� with an aim to obtain a mutated program that passes all tests
in�� . Other techniques [20, 26] use predeined templates to generate patches instead of random mutations. More
recent techniques [18, 54] employ machine-learned models to generate patches. Meanwhile, semantics-based
approaches [32, 33] irst infer constraints to ix the bug and then generate a patch that satisies the constraints.
The current challenges of APR include (1) how to ix more diverse bugs [44], (2) how to generate patches

fast [22, 62], and (3) how to generate correct patches. This work focuses on the third issue. Most current APR
techniques cannot guarantee the correctness of generated patches due to the overitting problem described below.

ACM Trans. Softw. Eng. Methodol.

https://github.com/UNIST-LOFT/poracle

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 5

2.2 Overfiting Problem

One of the major challenges in APR is the overitting problem [46] that occurs because many incorrect patches
exist in the patch space; they are often not iltered out by a given test suite [29, 46]. To address this problem, many
APR systems use one of the three techniques: (1) patch ranking algorithms, (2) score-based patch classiication,
and (3) evidence-based patch classiication.
The idea of patch ranking is to identify patches that are more likely to be correct and place them at higher

rankings than the others. For example, Prophet [28] ranks patch candidates based on a probabilistic model learned
from existing patches. Other APR tools, such as ACS [57], CapGen [52], SimFix [16], and JAID [4] similarly
perform patch ranking.

However, the ranking algorithms are often imprecise, and it is common that a correct patch is not ranked irst.
As the patch space increases, this problem tends to be exacerbated, and correct patches are often missed out [29].
Thus, many recent studies propose improved patch classiication (PC) techniques [11, 47, 49, 51, 56, 59, 60]. The
goal of the PC technique is to ilter out incorrect patches while keeping correct patches.

Score-based PC techniques perform patch classiication by computing the scores of the patches. In anti-patterns
(common patterns of incorrect patches) [47], a simple binary scoring scheme is used; patches belonging to
anti-patterns receive a low score and are rejected. Otherwise, patches are accepted. A more recent technique,
PATCH-SIM [56] computes the path similarity between the execution paths before and after the patch. Various
machine-learning-based classiication techniques have also been developed, using hand-crafted features [60] or
embedding techniques (e.g., [49] and BATS [48]). These techniques compare the computed scores with a threshold
to perform classiication, and the threshold is typically chosen empirically (e.g., using training data). In general,
it is diicult to choose a threshold that makes recall high while keeping precision close to 100% [1]. Also, these
approaches do not provide a semantic explanation for the classiication decision.

Evidence-based approaches [11, 59] do not have the limitations of the score-based approaches since a patch is
rejected only with concrete evidence of the error. Opad [59] uses a fuzzer to detect crashing patches. Fix2Fit [11]
similarly uses a fuzzer to avoid generating crashing patches. However, since only crashing patches are detected,
the recall of the existing evidence-based approaches is low.
Table 1 summarizes the existing PC techniques. Our technique inherits the advantage of evidence-based

techniques Ð i.e., when an incorrect patch is iltered out, clear evidence for the rejection is provided to the user Ð
and at the same time, lifts the limitation of the existing evidence-based techniques Ð i.e., low recall due to the
fact that only crashing patches can be detected. By allowing the user to specify his or her intention for the patch,
our method can also detect non-crashing incorrect patches, which leads to high recall, as will be shown with
experiments. In the PC classiication research, the main goal has been to achieve high recall without dismissing a
correct patch [51]. In this work, we show that this goal can be achieved by taking only a snippet of information
from the user.

2.3 Program Contracts

In the recent work of Nilizadeh et al. [37], program contracts are used to verify the correctness of APR-generated
patches using formal veriication techniques. Program contracts were also used to express and verify the user’s
change intention [13, 23, 63, 64]. Compared with these more formal approaches, our lightweight approach does
not require a separate contract, and our preservation condition is directly added into an existing failing test, the
input of most APR tools.

ACM Trans. Softw. Eng. Methodol.

6 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

1 double ret;

2 double d = getDenominatorDegreesOfFreedom();

3 - ret = d / (d − 2.0);

4 + ret = d / (d + 2.0);

(a) An incorrect patch for Math95

1 - double ret;

2 + double ret = 1.0;

3 double d = getDenominatorDegreesOfFreedom();

4 + if (d > 2.0) {

5 ret = d / (d − 2.0);

6 + }

(b) A correct patch for Math95

1 public void testSmallDegreesOfFreedom() {

2 FDistributionImpl fd =

3 new FDistributionImpl(1.0, 1.0);

4 double p = fd.cumulativeProbability(0.975);

5 double x = fd.inverseCumulativeProbability(p);

6 assertEquals(/∗ expected output ∗/ 0.975, x,

7 /∗ delta ∗/ 1.0e−5);

8 }

(c) Developer-writen failing test for Math95

1 public void testSmallDegreesOfFreedom(double d1,

2 double d2, double d3) {

3 FDistributionImpl fd =

4 new FDistributionImpl(d1, d2);

5 double p = fd.cumulativeProbability(d3);

6 double x = fd.inverseCumulativeProbability(p);

7 // Which expression should be used in the following blank

8 // to express the correct output for a given random input?

9 assertEquals(/∗ expected output ∗/ ______, x,

10 /∗ delta ∗/ 1.0e−5);

11 }

(d) An incomplete parameterized test of (c)

Fig. 2. Motivating example

2.4 Patch Evaluation

Apart from patch classiication (PC) techniques, there are also patch evaluation (PE) techniques [55, 58, 61, 65]
where patch correctness is evaluated based on correct versions in the benchmark. Unlike these patch evaluation
techniques, PC techniques like ours classify the correctness of a patch without consulting correct versions.

3 A MOTIVATING EXAMPLE

Consider a scenario where an APR tool returns a list of plausible patches, and the user inds a correct patch
among them. Suppose that the list contains many incorrect patches, including the one shown in Figure 2(a) and
a correct patch shown in Figure 2(b), all of which pass all available tests. Note that the size of the list is often
large. For example, JAID [4] generates 1263 patches4 for the example buggy version (Math95 in the Defects4J
benchmark [19]). To expedite the patch review process, the user may want to irst ilter out incorrect patches
using a patch classiication (PC) technique before reviewing the remaining patches. If she uses PATCH-SIM [56],
one of the state-of-the-art PC tools, the example incorrect patch is failed to be iltered out. In fact, all (14) incorrect
patches for the same buggy version available in our dataset are failed to be iltered out by PATCH-SIM. Being
disappointed, she may try out a recent ML-based PC tool, ODS [60]. Unfortunately, she only inds that ODS is
even more disappointing since it ilters out the correct patch!
This example illustrates the challenge of patch classiication. The users would want to ilter out incorrect

patches as much as possible, but the last thing they would want is to discard correct patches, which are only
scarcely available. Both PATCH-SIM [56] and ODS [60] use score-based approaches, making it challenging to
distinguish between incorrect and correct patches without discarding the latter. They compute a score for a given
patch and make a classiication decision by comparing the obtained score with a chosen threshold. If a threshold

4https://bitbucket.org/maxpei/jaid/wiki/Home

ACM Trans. Softw. Eng. Methodol.

https://bitbucket.org/maxpei/jaid/wiki/Home

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 7

Fig. 3. Our semi-automatic approach filtering out incorrect patches

is chosen conservatively as in PATCH-SIM, many incorrect patches are not iltered out. Meanwhile, if a threshold
is determined more aggressively as in ODS, many correct patches are also iltered out (see Section 6.2.1).

In this work, we use an evidence-based approach which does not sufer from the threshold problem; we reject
a patch only when concrete evidence for rejection is found via fuzzing, thus guaranteeing high precision. Note
that existing evidence-based approaches [11, 59] rely only on program crashes as concrete evidence. However,
using only implicit oracles is not enough, and the current evidence-based approaches sufer from low recall [51].
To provide more help to developers, we generalize the evidence-based approach by looking for any kind

of output discrepancies between patched and pre-patched versions. To look for a discrepancy, we start by
generalizing a given failing test. Figure 2(c) shows the failing test for our example buggy version, and Figure 2(d)
shows how we generalize the three constants of the existing test into three parameters d1, d2, and d3. Then,
using a QuickCheck framework [7] such as junit-quickcheck [14], we can obtain various random values for
these parameters to perform diferential fuzzing. One remaining problem is that not all output discrepancies
evidence the incorrectness of the patch since certain output changes are expected with the patch. To resolve this
problem, the oracle also needs to be generalized. In an attempt to generalize the original assertion, 0.975-1.0e-5
<= x <= 0.975+1.0e-5 (line 6ś7 of Figure 2(c)), the user can consult the API document of the method under test,
inverseCumulativeProbability, which speciies the following [10]:

• inf{x in R | P(X <= x) >= p} for 0 < p <= 1

• inf{x in R | P(X <= x) > 0} for p = 0

where inf, R and p represent inimum, a set of real numbers, and the parameter to the inverseCumulativeProbability

method, respectively. Unfortunately, this mathematical speciication is not executable and cannot be used directly
as an oracle.
In this paper, we propose an alternative way to specify the user’s intention when validating patches. In the

next section, we describe our semi-automatic patch validation methodology named Poracle.

ACM Trans. Softw. Eng. Methodol.

8 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

4 OUR APPROACH: PORACLE

Figure 3 illustrates our approach named Poracle. We consider a scenario where an APR tool generates multiple
plausible patches for a given buggy program, and the developer needs to review those patches to ind out the
correct one. For each patch �� , we take the following steps to decide whether to show it to the developer for
review.

(1) We generate an input � using our diferential fuzzer described in Section 4.4.
(2) We run the buggy program � with � to produce an output � .
(3) We check whether � and � satisfy the developer-speciied preservation condition � . If so, we run the

patched program �� with � to produce an output � ′. Otherwise, we go back to step 1.
(4) We check whether � and � ′ are diferent. If so, we ilter out the patch �� . Otherwise, we go back to step 1.
(5) We repeat steps 1ś5 until either �� is iltered out or a timeout occurs, in which case we show �� to the

developer for review.

In this section, we describe our approach in detail. We describe the concept of a preservation condition in
Section 4.1 and subsequently show in Section 4.2 how preservation conditions can be expressed in existing tests.
We provide examples of preservation conditions in Section 4.3. Section 4.4 describes our diferential fuzzer. Lastly,
in Section 5, we discuss various factors that can afect the efectiveness of our approach.

4.1 Generalizing a Failing Test with a Preservation Condition

Given a failing test an APR tool used to generate patches (e.g., Figure 2(c)), our speciication methodology takes
the following two steps.

Step 1) Parameterizing a failing test. To generalize the input of the existing test, we parameterize the original test
(constant values appearing in the test code are parameterized) as shown in Figure 2(d). An obtained parameterized
test can be perceived as a parameterized unit test (PUT) [50] or a property-based test (PBT) [7, 14].

Step 2) Generalizing an oracle. Given a parameterized test � (®�) where ®� represents parameters, we need an
oracle that can tell whether� (®�) returns a correct output when test� is executed over a patched version with an
arbitrary input. A conventional method is to write a formal speciication as shown in [37]. In such a approach, an
oracle function� (®�) satisfying the following is speciied by the user.

∀®� : � (®�) = � (®�) (2)

where� (®�) represents the output of test� when inputs ®� is assigned to parameters ®� . However, as described with
the motivating example, writing such� is not trivial even if a developer has a perfect understanding of the program
under testing. Alternatively, the user may describe a metamorphic relation (such as ������� (������� (�)) = �).
However, it is usually not easy to ind a metamorphic relation efective at bug inding [6, 31].

Generalizing an oracle with a preservation condition. Instead of specifying� , we suggest an alternative

speciication construct � we call a preservation condition. Given a parameterized test � (®�) applied to a buggy
program � and a correctly patched program � ′, preservation condition � should satisfy the following:

∀®� : � (®�) ⇒ �� (®�) = �� ′ (®�) (3)

where �� (®�) and �� ′ (®�) represent the output of test � in � and � ′, respectively, when inputs ®� is assigned to
parameters ®� . Here the intention is that for any input ®� satisfying � in the pre-patched version � , the output should

be preserved in the patched version � ′. Conversely, if output diference is observed for input ®� satisfying � in � , ®�
is evidence for the incorrectness of � ′. We call formula (3) a preservation invariant.

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 9

1 public void testGcd(int i, int j) {

2 boolean preservationCondition =

3 !((i==Integer.MIN_VALUE && j==0) || (i==0 && j==Integer.MIN_VALUE));

4 preserveIf(preservationCondition, () −> new Long[] { MathUtils.gcd(i, j) });

5 }

Fig. 4. An example of a preservation condition

4.2 Expressing a Preservation Condition in a Test

To see how we express a preservation condition in a test, consider an example of Figure 4 where a bug occurs be-
cause method gcd fails to handle a corner case input correctly; when gcd takes as input a pair of Integer.MIN_VALUE

and 0, the buggy version returns a wrong value. In this case, developers would want to test whether program
behavior is preserved in the non-corner cases (i.e., input is not a pair of Integer.MIN_VALUE and 0), and this
preservation condition is expressed in line 4 of our example.
As described in formula (3), we run our example test with both pre-patched and patched versions when the

preservation condition holds. To compare the output values of the two versions, we use our custom method
preserveIf, as shown in line 4. If the irst parameter holds true, the second parameter is evaluated in both versions,
and their values are compared with each other. If diferent values are observed, the patch under consideration is
classiied as incorrect. We use a lambda expression (i.e., () -> . . .) in the second parameter of the preserveIf method
for a technical reason.5

We formally deine the semantics of preserveIf as follows, where � and � ′ represent the pre-patched and patched
versions, respectively. Note that we run the pre-patched version before running the patched version.

� ′ ⊢ preserveIf(�, �) =

{

� ′ ⊢ Assert(eval(�) == �) if � ⊢ eval(�) == ���� , � ⊢ eval(�) == �

� ′ ⊢ nop otherwise
(4)

where notation � ′ ⊢ preserveIf(�, �) denotes that preserveIf(�, �) is executed under the patched version � ′. Similarly,
notation � ⊢ eval(�) = ���� denotes that preservation condition � is evaluated to ���� under the original version
� . Notation � ⊢ eval(�) == � is interpreted similarly.
If random input assigned to the parameters (i.e., i and j in the running example) satisies the preservation

condition in the original (pre-patched) version, we also run the same test with the patched version to compare
the output between the versions. Otherwise, we skip running the patched version with the current random input
(since � ′ ⊢ nop, there is no need to run the patched version).

4.3 Examples of Preservation Conditions

In this section, we show four examples of preservation conditions. These examples exhibit four diferent patterns
of preservation conditions that cover all buggy versions in our dataset. As detailed in Section 6.1, we write
preservation conditions to cover all 77 real-world bugs in our dataset. We obtain these 77 buggy versions from
the previous work on patch classiication [56]. Table 2 shows the distribution of the four patterns over the 77
buggy versions.
The distribution of the four patterns is shown in Table 2 and we present the examples in the order of the

coverage of each pattern.

5If an output value is obtained by calling a method (e.g., the method under test returns a reference type value � and to obtain an output,

�.toString() is used), an exception can be raised while calling that method. To ignore such a case, we pass a lambda expression to the

preserveIf method.

ACM Trans. Softw. Eng. Methodol.

10 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

Table 2. Distribution of preservation condition paterns

Project UE CC EGA RI

Chart 8 4 1 0

Lang 0 2 4 6

Math 18 14 7 6

Time 3 0 4 0

Total 29 20 16 12

1 public void testSmallDegreesOfFreedom(double d1, double d2, double d3) {

2 try {

3 FDistributionImpl fd = new FDistributionImpl(d1, d2);

4 double p = fd.cumulativeProbability(d3);

5 double x = fd.inverseCumulativeProbability(p);

6 preserveIf(/∗ preservation condition ∗/true, /∗ outputs to compare ∗/ () −> new Double[] {x});

7 } catch (Exception e) {

8 // If an exception occurs only in the patched version, the patch is classified as incorrect.

9 failToPreserve();

10 }

11 }

Fig. 5. Generalized test for Math95 (UE)

4.3.1 Unexpected Exception (UE). The test shown in our motivating exampleśFigure 2(c)śfails because an
exception is thrown when it is not expected. In this case, the developer would want to preserve the program
behavior as long as the original version does not throw an exception. Figure 5 shows how we generalize the test.
The preserveIf method at line 6 is called only when an exception is not thrown before reaching that line. Thus, the
preservation condition is simply true in this case.

What if an exception occurs only in the patched version? In this example, it would be reasonable to classify the
patch as incorrect in that case. To do that, we use another custom method failToPreserve at line 9 whose semantics
is deined as follows, where��� refers to a predeined unique message:

� ⊢ failToPreserve() =

{

� ⊢ preserveIf(true,���) if � is a patched version

� ⊢ nop if � is a pre-patched version

If an exception occurs only at the patched version, the output of the patched version is���, whereas the output
of the pre-patched version is the value of x obtained at line 6. Thus, the discrepancy in the output is detected as
desired.

Comparison with the existing approaches. The existing approaches such as Opad [59] and Fix2Fit [11]
detect crashing patches which can be viewed as the UE pattern. However, these existing approaches cannot
detect unexpected non-crashing diferences between the versions. In comparison, the test shown in Figure 5 can be
used to detect such unexpected non-crashing diferences. For example, if method inverseCumulativeProbability

behaves diferently between pre-patched and patched versions, the outputs of the two versions are compared to
each other by calling the preserveIf method.
By using the generalized test shown in Figure 5, we succeed to reject all 15 incorrect patches available in our

benchmark while accepting the correct patch (Figure 2(b)).

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 11

1 public void testGcd(int i, int j) {

2 /∗ Original body:

3 try {

4 MathUtils.gcd(Integer.MIN_VALUE, 0);

5 fail("expecting ArithmeticException");

6 } catch (ArithmeticException expected) { // expected }

7 ∗/

8 // Generalized body:

9 try {

10 boolean complement = !((i==Integer.MIN_VALUE && j==0) || (i==0 && j==Integer.MIN_VALUE));

11 final long actual = MathUtils.gcd(i, j);

12 preserveIf(complement, () −> new Long[] { actual });

13 } catch (ArithmeticException e) {

14 preserveIf(!complement, () −> new String[] { e.toString() });

15 } catch (Exception e) {

16 failToPreserve();

17 }

18 }

Fig. 6. Generalized test for Math99 (CC)

1 public void testSSENonNegative(double d1, double d2, double d3, double d4, double d5, double d6) {

2 try {

3 double[] y = { d1, d2, d3 };

4 double[] x = { d4, d5, d6 };

5 SimpleRegression reg = new SimpleRegression();

6 for (int i = 0; i < x.length; i++) {

7 reg.addData(x[i], y[i]);

8 }

9 double ret = reg.getSumSquaredErrors();

10 // Original: assertTrue(ret >= 0.0);

11 preserveIf(ret >= 0.0, () −> new Double[] { ret });

12 } catch (Exception e) {

13 failToPreserve();

14 }

15 }

Fig. 7. Generalized test for Math105 (EGA)

4.3.2 Complementary Cases (CC). A software fault often occurs when corner-case behavior is not yet imple-
mented. Consider Figure 6 whose simpliied version was shown earlier in Figure 4. In this example, the bug
occurs because method gcd fails to handle a corner case input correctly; when gcd takes as input a pair of
Integer.MIN_VALUE and 0, an ArithmeticException is expected to be thrown (see line 5), but the buggy version fails
to do so. In this case, developers would want to test whether program behavior is preserved in the complementary

cases where input is not a pair of Integer.MIN_VALUE and 0. The generalized test shown in Figure 6 can detect an
incorrect patch that returns an incorrect output (line 12). It can also detect incorrect patches that either fail to
throw an expected ArithmeticException (line 14) or throw an unexpected exception (line 16).

ACM Trans. Softw. Eng. Methodol.

12 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

1 public void testLang300(int n, int m) {

2 // NumberUtils.createNumber("1l"); // Original body

3 // Test with a generalized input

4 String s = "" + ((char) n) + ((char) m) + "l";

5 String actOut = "";

6 try {

7 actOut = "" + NumberUtils.createNumber(s).longValue();

8 } catch (Exception e) {

9 actOut = "Exception";

10 }

11 // Use Long.valueOf as a reference

12 String refOut = "";

13 try {

14 refOut = "" + Long.valueOf(s);

15 } catch (Exception e) {

16 refOut = "Exception";

17 }

18 preserveIf(actOut.equals(refOut), () −> new String[] { actOut });

19 }

Fig. 8. Generalized test for Lang58 (RI)

4.3.3 Existing General Assertion (EGA). A certain assertion existing in the test can be repurposed as a preservation
condition. For example, consider Figure 7 where the original test uses an assertion condition, ret >= 0.0 (line 10).
Note that this assertion should be satisied for all input values (i.e., d1, d2, . . ., d6) as long as no exceptions are
thrown. Many tests, if not all, contain such general assertions that should be satisied for all inputs. In such cases,
the assertion can be reused as a preservation condition.

Note that reusing the existing condition as a preservation condition does not mean that oracle power stays the

same. Note that incorrect patches assigning wrong positive values to variable ret still satisfy ret >= 0.0. Those
incorrect patches cannot be rejected if ret >= 0.0 is solely used as an oracle. Only after using ret >= 0.0 as a
preservation condition, the oracle power is elevated; the aforementioned incorrect patches can be detected since
outputs will difer between the two versions.

4.3.4 Reference Implementation (RI). It is known that developers often write redundant implementations [2, 3, 17].
Consider Figure 8 where the createNumber method is tested. The functionality of this method is the same as
the Long.valueOf method when the input string to createNumber ends with łlž. The preservation condition,
actOut.equals(refOut), expresses the intention that behavior should be preserved after the patch if the method
under test returns the same output as the reference implementation in the pre-patched version.

4.4 Diferential Fuzzing

In this work, we advocate a semi-automated approach for patch validation. Once a preservation condition is
written, the next step ś inding an input that makes the patched version violate the speciied preservation
invariant ś is automatically performed via diferential fuzzing.
We design a fuzzer that takes as input a pair of pre-patched and patched versions and a generalized test.

Speciically, we customize JQF [40], a coverage-guided fuzzer for Java, so that our two speciication APIs (preserveIf
and failToPreserve) are supported. In addition, we add features for diferential fuzzing to JQF as these features

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 13

Algorithm 1 The Poracle fuzzing algorithm

Input: a buggy version � and its patched version �′

Input: a parameterized test with a preservation condition �

Output: witness value ®� that makes the patched version violate the speciied preservation invariant

1: ®� ← ⊥

2: � ← ∅ ⊲ a set of interesting input

3: �������� ← ∅ ⊲ total coverage

4: ���������� ← � ����;���������� ← 0

5: repeat

6: if � = ∅ then

7: if ���������� >= � then

8: widenRange(); ���������� ← 0

9: end if

10: � ← � ⊲ � : a random value within in the range

11: else

12: � ← ChooseNext(�)

13: end if

14: for � from 1 to Energy(�) do

15: �† ← Mutate(�, �)

16: // Run the original version �

⊲ � : outputs, ��� : coverage, � : program states

17: �, ���, � ← Run(�, �†)

18: if � (�†, �) then

19: // Preservation condition � is satisied

20: ���������� ← 0

21: // Run the patched version �′

⊲ �′: dumped program state

22: �′, ��� ′, �′ ← Run(�′, �†)

23: if � ≠ �′ then

24: ®� ← �†

25: return ®� ⊲ return a found witness value

26: end if

27: else

28: // Preservation condition � is not satisied

29: ����������++; ��� ′ ← ⊥

30: end if

31: if ShouldSave(���, ��� ′, �†) then

32: � ← � ∪ {�†}

33: end if

34: end for

35: until timeout reached

are not supported in the original JQF. Our diferential fuzzing tool can be obtained at https://github.com/PLaSE-
UNIST/poracle-tool.

Algorithm 1 shows our fuzzing algorithm. The overall structure follows the standard coverage-guided fuzzing.
The algorithm maintains a set of interesting input � . Set � is initialized with an empty set (line 2), and random
inputs are used until � becomes non-empty (line 10). If new interesting input is found, the current input is added
to � (line 32). The meaning of Energy (line 14) and ShouldSave (line 31) functions are explained in the later part

ACM Trans. Softw. Eng. Methodol.

https://github.com/PLaSE-UNIST/poracle-tool
https://github.com/PLaSE-UNIST/poracle-tool

14 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

of this section. In JQF, coverage is a set of all coverage points (e.g., program branches) covered by the input. In
our fuzzer, we extend this concept and concatenate the coverage obtained from both pre-patched and patched
versions.

While the overall structure of our fuzzer follows the standard coverage-guided fuzzing, we also customize our
fuzzer as described below.

4.4.1 Considering the Specified Preservation Condition. Unlike the conventional diferential fuzzers, our fuzzer
does not have to always execute both pre-patched and patched versions. Instead, our fuzzer runs a patched
version only when a given preservation condition � is satisied in its pre-patched version (lines 18ś30). This is
because if � is not satisied in the pre-patched version, the given preservation invariant cannot be violated. Thus,
when � is not satisied in the pre-patched version, we directly generate the next input and run the pre-patched
version.

When generating a random input, our fuzzer chooses a value in the range of [� − �, � + �] where � is a ixed
constant and � is chosen adaptively.6 In general, the fuzzing space grows as a larger range is used, and as a result,
fuzzing eiciency decreases. To balance the fuzzing space and eiciency, our fuzzer gradually widens the range
until an input satisfying a given preservation condition is found. More speciically, we widen the range if the
given preservation condition is not satisied for� consecutive times (line 8).7 In cases where a ixed range should
be used for a certain parameter (e.g., a parameter representing the week of a date), we allow developers to express
that intention, and adaptive widening is disabled.8

4.4.2 Considering the Program State Changes Between the Two Versions. To trigger an output diference between
the pre-patched and patched versions, it is necessary to propagate state changes made in the patched location
Ð we assume that a single program location is patched as done in most current APR tools Ð toward the end
of the execution path. To achieve this, our fuzzer exploits not only code coverage but also the program state
changes observed between the two versions. More concretely, we add an input �† to a set of interesting input �
(i.e., ShouldSave returns true) when one of the following two conditions is satisied:

(C1) �† covers a new branch in either the pre-patched or patched version.
(C2) �† propagates the state changes made in the patched location further toward the end of the execution path.

To check C2, we do the following. First, when the patched location is reached while executing the patched version,
we extract the stack trace, [�1,�2, . . . ,��], where�1 refers to the patched method,�2 is the caller of�1, and
�� is the top-level method. Then, at each exit point of�� , we extract a program state �� and �

′
� from the buggy

version and its patched version, respectively. We deine a program state as a set of mappings from a variable to
its value. To conine the size of the program state, we keep track of only the variables � satisfying the following
properties. Below, we denote the receiver object of�� as � . We do not consider static methods.

• � is reachable from � or refers to the ghost variable holding the return value of�� .
• The type of � is either primitive or String.

We then compute the distance between �� and �
′
� as the summation of |� − � ′ | for each variable � in �� and its

corresponding variable � ′ in � ′� . When � has the String type, we compute the Levenshtein distance between � and
� ′.

Finally, given the stack trace [�1,�2, . . . ,��], we compute a distance list [�1, �2, . . . , ��] where �� denotes the
state distance between �� and �

′
� . Note that if �� is zero, � � for � > � is also zero. We consider that C2 is satisied

when one of the following conditions holds.

6The value of � can be obtained from the constant value used in the original failing test. For example, the value of parameter d3 of Figure 2(d)

is in the range [0.975 − �, 0.975 + �].
7We use 10 in our experiments.
8This feature is not shown in Algorithm 1 for the simplicity of presentation.

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 15

(1) � � is positive for the irst time Ð i.e., the state changes are propagated further than before.
(2) � � is larger than its previous maximum value and � �+1 is zero in all cases so far including the current case.

Among the saved inputs, our fuzzer prioritizes those that propagate state changes further. To achieve this, we
sort the saved inputs as follows:

• For input � , let���_��� (�) denote the maximum index � such that � � is positive. We place an input �1 after
�2 when���_��� (�1) > ���_��� (�2).
• If ���_��� (�1) = ���_��� (�2), we break the tie as follows. Let ���_���_��� (�) denote the value of � �

where max _��� (�) = � . We place an input �1 after �2 when���_���_��� (�1) > ���_���_��� (�2).

Once sorting is done, we assign energy to input � (i.e., the number of iterations � is mutated). In Algorithm 1,
the Energy function returns the energy assigned to � . To mutate more promising input Ð i.e., an input towards the
end of the sorted input list Ð more frequently, we use the following formula:���������× �+1

|� | where���������

refers to the maximum value Energy can return and � is the index of � in the sorted input list � .

5 DISCUSSION

Our method is speciically designed for developers who desire greater control over the patch classiication process. We
assume that the users of our approach have adequate domain-speciic knowledge about the target program and
the patch. Please note that our method is not intended to replace existing automatic patch classiication (PC)
techniques. Rather, it ills a gap the existing PC techniques cannot cover. Even if developers wish to incorporate
their domain-speciic knowledge, the existing PC techniques do not allow for this. Our approach provides
developers with a language to express their domain-speciic knowledge (i.e., preservation condition) and a tool
(i.e., a diferential fuzzer) to ilter out incorrect patches based on this knowledge.

In this section, we discuss the beneits and limitations of our semi-automatic approach in Section 5.1 and
Section 5.2, respectively. Subsequently, we present in Section 5.3 a guideline to write a preservation condition
to minimize the limitation of our approach. In Section 5.4, we discuss the possibility of further automating our
approach. Finally, Section 5.5 compares our approach with conventional test assertions.

5.1 Benefits of Our Approach

APR systems are expected to be integrated into a continuous integration (CI) system. Imagine that one of the
regression tests fails, and an APR tool generates a set of patches. In case it is clear how to ix the detected bug,
the developer would easily ix the bug without having to take a look at the generated patches. APR and our patch
validation approach can be handy in the opposite case. If the developer is not sure about how to ix the bug and
an APR tool generates multiple patches, the developer would consider using our approach to obtain the following
beneits. First, as shown in this work, incorrect patches an APR tool generates can be iltered out. This can reduce
the cognitive load of the developer since multiple incorrect patches can be iltered out by generalizing a failing
test with a preservation condition only once.

As the second beneit, the developer can have higher conidence in the obtained patch surviving hundreds of
tests instantiated from the prepared generalized test. In the current APR community, it is generally assumed that
the developer can easily determine the correctness of a patch an APR system generates. However, recall that
the fault localization research community initially made a similar assumption Ð simply suggesting a faulty line
candidate would be enough for the developer to detect, understand, and ix the bug Ð but since the seminal paper
of Parnin and Orso [42], this assumption was abandoned in the community. We argue that the APR community
should also consider the possibility that simply suggesting a patch may not be suicient for the developer to
decide the correctness of a patch. Indeed, earlier studies show that developers often make mistakes when writing
a patch [21, 34]. Our approach helps the developer identify incorrect patches.

ACM Trans. Softw. Eng. Methodol.

16 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

(a) Under-approximate � (b) Over-approximate � (c) Wrong �

Fig. 9. Imperfect preservation conditions

Lastly, once a generalized test is written, it can be reused to test future code changes as long as the preservation
condition does not change. When a test fails in a CI system and as a follow-up, an APR system generates multiple
patches, only the patches that survive all available generalized tests will be shown to the user.
While it takes some time for a user to extend the existing failing test into a generalized test, this task can be

done while an APR system is running in the CI system, given that it takes a long time for an APR tool to generate
a patch. The time spent preparing a generalized test can be compensated in multiple ways as described.

5.2 Limitations of Our Approach

5.2.1 Impact of Imperfect Preservation Condition. As with any approach that involves human input, the efective-
ness of our approach depends on the quality of the input provided. There are the following four diferent cases to
consider:

(1) A user-written preservation condition � is equivalent to the ground-truth preservation condition� (i.e.,
� = �).

(2) � is an under-approximation of� (i.e., � is stronger than�).
(3) � is an over-approximation of� (i.e., � is weaker than�).
(4) � is wrong (i.e., neither � nor� completely includes the other).

Figure 9 illustrates the latter three cases where � is not equivalent to� . In the igure, each shape represents
the following:

• The outer solid ellipse. It represents the input space � of the original buggy version � .
• The inner dotted ellipse. It represents the sub-space of � where preservation condition � is not satisied.
Thus, � is satisied in the grey donut-shaped space.
• Three purple squares. They represent the three undesired output changes induced between the original

buggy version � and the patched version � ′. We use the notation �✗

� (where 1 ≤ � ≤ 3) to refer to these
three purple squares.
• The green square. It represents the desired output change induced between � and � ′. We refer to this

green square by the notation �✓4 .

We classify the patched version � ′ as incorrect if a square of any color is detected in the grey area. This leads
to the following consequences:

• Under-approximated � . This amounts to Figure 9(a). The patch is correctly classiied as incorrect if �✗

2 or

�✗

3 is detected. However, if �✗

1 is detected, our method does not classify the patch as incorrect.

• Over-approximated � . This amounts to Figure 9(b). The patch is correctly classiied as incorrect if �✗

1 , �
✗

2

or �✗

3 is detected. The detection of �✓4 also results in the correct classiication of the patch as incorrect.
However, this classiication is only coincidentally correct.

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 17

<latexit sha1_base64="tOespSt38bU+pnQM7KLsXFeNh1Y=">AAAJlXictVZbjxs1FJ62AZpwa8sDD7wYVpWKlI0yCWWRqikt6QL7At2K9KJsVHk8ZzJWPPbU9nSTRvkr/Bpe4Z1/w/FMop1JdqMgwUiR7ONz+c7FnxNmghvb7f597fqNxnvvf3Cz2frwo48/+fTW7TvPjco1gyFTQumXITUguISh5VbAy0wDTUMBL8LpwJ2/eAvacCV/s/MMximdSB5zRi2KXt9uHJ1ZPn1n7FzA4k0OxomXJCAjDcxSORHQJq2US57mKTnnkU0Cn6UVWQJ8ktiV0MLMEgbSgoZovS+tvikUIk3Pg1BQNh23WpXQDttWWK1yGUFEmNISc2j/Jzj8zv1LkIQw4XLh8GSc2VzDciRVBCTCFlDJIOiz1OkVwnun/tdktK7WmCxaTxQYYhMgFmUkplyQKMedIlSSXMIsw7QwE5gxyJzR963lgwt3vYq7NglBqHOiXTpExcGpX4sAM4TE5aQMxZS0lEtCyQSwRlQQagzorRDDYwzhirx2LyCueB8eV5WPf3p8lXbPaeN5DX5/J/zC5MQgRA0x9gOrSXiaCUixP8UYEvoWK0ZxZmuYn51chaLvXD47qSoPBhvKFwAK7cGg1HZtJyOqtTofl408PCTOxQjbnCgdADUWDV6BWRZle7CHzTkUNr+oZdHMbZPe7jCu4PsY1eL0LzHp746DFd3HphoG6+rKBjKq3Y7W61sH3U63+Mj2wl8tDrzV9xSp5vgsUix3XWcCp3TkdzM7XlAcVibQ41luIMPrSCcwwqWkKZjxoqC4JbmLkojESuNPurFHadViQVNj5mmImim1idk8c8LLzka5jb8bL7jMcouTWQaKc+GurpsmJADHSGKOC8o0R6yEJVRTvM66HsX5zmw6q2WyMDaleq6jDanKRV0S5sZkWqnY1OV5NtEA0w1lpaaWhqZN0lxYjo2sn7+xaFMXueaVErcSPNQIa2ESmoHpTEClYDVnbVKMhdnWzJTh7q4i8yxbNepGgtTWWJVt8vcmfW++I/2r+HuLvi+4GjcxFyJA+Zf9bv0N4apAYDXm9I7nxTuwXhODJbEsARNYnSO4u+QxERQDEBpFRWYV5YJoiiyCo27NTckq5ZHvd/fPiezKqUgpFDls5YQjwcCY/+VF7u98kSNg3Kz/DODwp0pG/yLdPXroBlsWGVfCFvNX9jHhqHv4sP0wMBaosAkCbDni8TdpZnvxvNfxv+3cP+0dPPphRUE3vS+8r7x7nu8deY+8n72n3tBjjd8bfzT+bPzV/LwZNJ80fyxVr19b2Xzm1b7mr/8A2CQ1lw==</latexit>

Does the test fail due to

an unexpected exception?

Does the existing test

contain a general assertion?
UE

EGA
Is a reference imple-

mentation available?

RI CC

Yes No

Yes No

Yes No

Fig. 10. Decision tree about preservation condition paterns

• Wrong � . This amounts to Figure 9(c). The patch is incorrectly classiied as incorrect if �✓4 is detected.

In summary, using an under-approximate preservation condition can lead to false negatives (i.e., an incorrect
patch is not iltered out), while using an over-approximate preservation condition can lead to false positives (i.e.,
a correct patch is iltered out).

5.2.2 Non-regression Error. Our approach can detect a regression error caused by a patch. If the speciied
preservation condition is met, the output diference between the original buggy version and the patched version
is considered a regression error, leading to the classiication of the patch as incorrect. However, regression is
not the only reason for a patch to be incorrect. A patch is also incorrect if it does not change the output of the
original version correctly. While our approach uses the original version as the oracle when a given preservation
condition is met, it does not check the behavioral correctness when the preservation condition is not met, which
may result in failing to detect incorrect patches.

5.3 A Guideline to Write a Preservation Condition

The eicacy of our approach depends on the quality of the preservation condition. However, this does not mean
that developers need to write a complex preservation condition. On the contrary, when we applied our method to
automatically generated patches for real-world bugs (Section 6), we found that a simple preservation condition is
often suicient (see Figure 16). In this section, we discuss a possible guideline for writing a preservation condition.

A preservation condition can be viewed as an answer to the following question: What are the conditions under

which I can conidently trust the correctness of the output produced by the original version? For example, if the bug
at hand is about an exception unexpectedly thrown, the developer would assume that the output of the original
version is correct when that exception is not thrown.

In Section 4.3, we introduced four preservation condition patterns: UE, CC, EGA, and RI. All these patterns
provide a framework for answering the aforementioned question of when one can trust the correctness of the
output produced by the original version. If a developer wants to directly specify the condition under which
the bug at hand occurs, they can use the CC pattern. Note that a preservation condition is the negation of the
bug-triggering condition that has been identiied. However, while the CC pattern is most general, it often leads
to a more complex preservation condition compared to the other patterns (see the łPattern Complexityž column

ACM Trans. Softw. Eng. Methodol.

18 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

1 public void testGcd(int i, int j) {

2 try {

3 long actual = MathUtils.gcd(i, j);

4 if (i == 0 && j == 0)

5 assertEquals(0, actual);

6 else if (i == j || j == 0)

7 assertEquals(Math.abs(i), actual);

8 else if (i == 0)

9 assertEquals(Math.abs(j), actual);

10 else {

11 // check if actual is the true gcd.

12 if (i % actual != 0 || j % actual != 0)

13 fail();

14 for (int k = actual + 1; k < Math.max(Math.abs(i), Math.abs(j)); k++)

15 if (i % k == 0 && j % k == 0)

16 fail();

17 }

18 } catch (ArithmeticException e) {

19 assertTrue((i == MIN_VALUE && j == Integer.MIN_VALUE) || (i == Integer.MIN_VALUE && j == 0)

20 || (i == 0 && j == Integer.MIN_VALUE));

21 }

22 }

(a) Generalized test for Math99 using the conventional test assertions

1 public void testGcd(int i, int j) {

2 // Generalized body:

3 try {

4 boolean complement = !((i==Integer.MIN_VALUE && j==0) || (i==0 && j==Integer.MIN_VALUE));

5 final long actual = MathUtils.gcd(i, j);

6 preserveIf(complement, () −> new Long[] { actual });

7 } catch (ArithmeticException e) {

8 preserveIf(!complement, () −> new String[] { e.toString() });

9 } catch (Exception e) {

10 failToPreserve();

11 }

12 }

(b) Generalized test for Math99 using a preservation condition (copied from Figure 6)

Fig. 11. Two kinds of generalized tests for Math99

of Table 10). Therefore, we recommend that developers consider using the other patterns irst if possible, as they
can be viewed as special cases of the CC pattern.
The UE pattern can be used when the bug is manifested by an unexpected exception, while the EGA pattern

can be used when the existing test already contains a general assertion. Similarly, the RI pattern can be used
when a reference implementation is available. To provide developers with a concrete guideline on how to write a
preservation condition, we ofer a decision tree shown in Figure 10.

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 19

(a) When conventional test assertions are used. Input
space is divided intomultiple partitions, some ofwhich
may overlap, with each partition having its own asso-
ciated oracle in a form of an assertion.

(b) When a preservation condition is used. Input space
is divided into two partitions and when the preserva-
tion condition is satisfied (i.e., the grey region), the
output of the original version is used as an oracle.

Fig. 12. Comparison of output spaces when conventional test assertions and a preservation condition are used

5.4 Discussion about Automation

Given the necessity of domain-speciic knowledge, it would not be easy to fully automate the test generalization
process. However, the process can be partly automated in a similar way to refactoring incorporated into IDEs
such as IntelliJ [15] and Visual Studio Code [35]. For example, when the user observes an unexpected exception
from a test, the automatic transformation of an existing test (e.g., Figure 2(c)) into a generalized version (e.g.,
Figure 5) can be performed in a straightforward manner. For the remaining less common patterns, more user
input is necessary, similar to some refactoring patterns. Once the user chooses a generalization pattern to use and
a necessary preservation condition, the rest of the transformation can be performed automatically, after which
the obtained transformed test can be reviewed/edited by the user. Leaving IDE integration as future work, we
irst investigate the eicacy of generalized tests in iltering out incorrect patches.

5.5 Preservation Conditions vs. Conventional Test Assertions

In Section 4.1, we mentioned that writing an oracle function� (®�) is diicult even if a developer has a perfect
understanding of the program under testing. Recall that� (®�) satisies the following:

∀®� : � (®�) = � (®�)

where � (®�) represents the output of test � when inputs ®� is assigned to parameters ®� of the generalized test.
Conventionally,� is written as a test assertion.

We also showed a concrete example (i.e., the motivating example shown in Section 3) for which it is not clear
how to write a conventional assertion, whereas the preservation condition for the same example is very simple
(i.e., true), as shown in Figure 5.

As another example, compare the two generalized tests shown in Figure 11; Figure 11(a) uses conventional
assertions, whereas Figure 11(b) uses a preservation condition. The generalized test shown in Figure 11(a)
expresses the following requirements of the gcd method [9]:

(1) Line 4ś5: The invocation gcd(0, 0) is the only one which returns 0.
(2) Lines 11ś16: Computes the greatest common divisor of the absolute value of two numbers.
(3) lines 6ś9: The result of gcd(x, x), gcd(0, x) and gcd(x, 0) is the absolute value of x, except for the special cases

above.
(4) lines 19ś20: The invocations gcd(Integer.MIN_VALUE, Integer.MIN_VALUE), gcd(Integer.MIN_VALUE, 0) and gcd(0,

Integer.MIN_VALUE) throw an ArithmeticException.

ACM Trans. Softw. Eng. Methodol.

20 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

Table 3. Dataset used in our experiment

Project Chart Lang Math Time Total

jGenprog 6+0 0+0 10+4 2+0 18+4

jKali 6+0 0+0 9+1 2+0 17+1

Kali-A 0+0 0+0 14+2 0+0 14+2

Nopol2015 6+0 5+2 14+1 1+0 26+3

Nopol2017 6+0 10+2 42+1 9+0 67+3

ACS 0+2 2+3 13+31 0+3 15+39

HDRepair 0+0 0+1 5+2 0+1 5+4

ARJA 0+0 0+1 16+6 0+0 16+7

AVATAR 0+0 4+0 14+4 1+2 19+6

SimFix 0+0 0+4 19+14 1+1 20+19

DynaMoth 0+0 1+2 17+2 1+0 19+4

FixMiner 0+0 1+0 17+7 1+2 19+9

TBar 0+0 5+2 17+10 1+2 23+14

KPar 0+0 4+1 15+7 1+2 20+10

RSRepair-A 0+0 0+1 17+4 0+0 17+5

Total (Generated) 24+2 32+19 250+98 20+1 326+132

Developer Patches
13 10 45 9 77

(# of Buggy Versions)

x+y denotes x patches labeled incorrect and y patches labeled

correct.

As shown with this example, when writing a conventional test, the test writer often needs to understand how
to partition the input space and write an oracle for each input partition. In comparison, writing a preservation
condition is simpler for the following two reasons.

• First, as illustrated in Figure 12(b), the writer of a preservation condition needs to split the input space into
only two partitions, one where the behavior should be preserved after patch and the other one where the
behavior is allowed to be changed.
• There is no need to write an assertion to check behavioral preservation because the output of the original
version serves as the oracle.

Bug ixing typically involves making limited changes to the program behavior, and this makes it suitable for
describing when the program behavior should be preserved.

6 ASSESSMENT

We assess our speciication-based patch-validation approach, Poracle, with the following research questions.

• RQ1 (Classiication Performance): How does our approach perform as compared to the state-of-the-art
approaches?
• RQ2 (Other Attributes): Apart from classiication, we also evaluate our approach in terms of other
important attributes listed in the following:

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 21

ś RQ2-1 (Consistency): Poracle uses a fuzzing technique, which may not produce the same result across
multiple runs. How does the randomness of fuzzing afect the consistency of the results across multiple
runs?

ś RQ2-2 (Time eiciency): If a patch classiication takes too long, it would impede APR adoption by
practitioners. How fast does our fuzzer detect incorrect patches?

ś RQ2-3 (Ablation Study): Our patch-classiication approach consists of two parts: (1) generalizing a
failing test with preservation conditions, and (2) conducting diferential fuzzing. To evaluate the impact
of preservation conditions on classiication performance, we perform an ablation study by disabling
preservation conditions. We compare the obtained results with those obtained using the full approach.

ś RQ2-4 (Application scope): APR research is gradually moving towards more complex patches [53]. Is
Poracle efective for more complex patches?

• RQ3 (Cost reduction): Our work is motivated by the high cost of manually validating a large number of
plausible patches. When our approach is applied to an APR system that returns a ranked list of plausible
patches, how much cost reduction can be achieved by iltering out incorrect patches?
• RQ4 (Usability): Poracle uses a semi-automated approach, and thus, we study how the user adopts our
approach.

6.1 Experimental Setings

In this subsection, we describe the experimental settings we used for RQ1 (Classiication Performance) and RQ2
(Other Attributes). For the remaining two RQs, we conduct diferent experiments, as will be described later.

Datasets. Our dataset contains in total 458 patches collected in the following way. We start with the 139
patches used in PATCH-SIM [56], a de facto standard dataset [49, 51, 60] for PC techniques. For a fair comparison,
we run the irst experiment with the PATCH-SIM dataset prepared by the authors of PATCH-SIM. The PATCH-SIM

dataset consists of the 139 patches generated from 77 buggy versions in the Defects4J benchmark [19] and their
correctness labels. For each of those 77 buggy versions, we generalize its failing test by adding a preservation
condition. In case more than one failing test exists, we generalize only one failing test, simulating a bug-ixing
scenario where a developer typically has only one failing test initially. Note that most bugs (61 out of 77) in our
dataset have only one failing test.
We also run the second experiment with an extended dataset extracted from the large-scale work of Liu et

al. [27] where the authors collected patches generated from 16 APR systems and labeled the correctness of each
patch after manual investigation. A patch is labeled as correct when it is identical to or semantically similar to
the developer-written patch. For the criteria used to determine semantic similarity, please refer to [27]. Labeling
the correctness of a patch is a laborious and error-prone task, and we utilize the aforementioned existing labeled
dataset. Using the labels prepared by other researchers also helps us mitigate the internal threat to validity caused
by wrong or prejudiced labels. We collect all patches in [27] generated from the buggy versions covered by our
77 generalized tests. This step adds 350 patches to our pool of patches. In the end, we obtain 458 patches after
removing 31 duplicate patches that exist in both datasets. Table 3 summarizes our dataset where the notation
x+y denotes x patches labeled as incorrect and y patches labeled as correct. Note that the extended dataset is the
superset of the PATCH-SIM dataset. In the last column of Table 3, the number of developer patches is identical to
the number of buggy versions used in our dataset, as our dataset contains one developer patch for each buggy
version.

In summary, we use two datasets in our experiments, the PATCH-SIM dataset and the extended dataset, both of
which share the same 77 buggy versions.

ACM Trans. Softw. Eng. Methodol.

22 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

Patch Classiication Techniques. To assess the performance of Poracle, we compare the results with the
following four state-of-the-art patch classiication techniques: PATCH-SIM [56], Opad [59], and two machine-
learning-based approaches [49, 60], which includes all existing PC techniques targeted for Java programs men-
tioned in Section 2. Note that anti-patterns [47] and Fix2Fit [11] are designed for C programs, and we exclude
them from our experiment.
As mentioned in Section 2, we do not consider patch evaluation (PE) techniques [55, 58, 61, 65] such as

DiffTGen [55] in our evaluation. PE techniques assume the existence of ground-truth patches and use them to
check whether the patch under consideration is semantically equivalent to its ground-truth patch. The target
users of the PE techniques are APR researchers who want to evaluate the quality of the generated patches.
In comparison, the target users of the PC techniques like ours are developers in the ield; the PC techniques
should work without ground-truth patches. Note that while our benchmark contains ground-truth patches, our
classiication technique does not use them.
Among the four PC techniques, Opad uses an evidence-based approach, whereas the remaining three tools

use score-based approaches. Opad classiies a patch as incorrect if a crash is detected when a patched version is
run under a fuzzer. PATCH-SIM computes the distance between the executions of test � before and after applying
the patch � (denoted with ����� (�)) and classiies the patch as incorrect in the following two cases: (1) when the
maximum distance observed in the passing tests is larger than the predeined threshold (i.e., after patch, the
execution of the passing test substantially deviates from the original execution path), and (2) when the maximum
distance observed in the passing tests is larger than the average distance observed in the failing tests (i.e., after
patch, the execution path deviates further from the passing tests than from the failing tests). Otherwise, the patch
is classiied as correct. We will describe the two ML-based approaches shortly.

We run our fuzzer with a 10-min timeout, using our generalized tests as fuzz drivers. We run PATCH-SIM with
a 35-min timeout. PATCH-SIM is reported to take up to 30 minutes in its original work [56]. PATCH-SIM internally
uses Randoop [39] to prepare test cases to run, and we use a 3-min timeout for Randoop as used in the original
experiment of PATCH-SIM. Opad is originally implemented for C programs, and we simulate Opad in Java by
classifying a patch incorrect if a patched program throws an exception that is not observed in the original version;
the same approach was used in previous work [56]. For a fair comparison with Opad and Poracle, we use the
same fuzzer and timeout for both tools (i.e., 10 mins). All our experiments are performed on Intel Xeon Gold CPU
and 128GB memory.

We also compare Poracle with two ML-based approaches [49, 60]. In [49], patch classiication is performed by
irst transforming patch code into an embedding vector using an embedding technique (such as BERT [8]), and
then passing an obtained embedding vector to an ML classiier (such as logistic regression), which is trained
with the embedding vectors transformed from correct and incorrect patches. In [49], the combination of BERT
and logistic regression (denoted with BERT-LR in this paper) is shown to perform best, and we use that in our
comparison study. While the tool used in [49] is not publicly available, the embedding vectors for the patches in
their dataset and the classiication script is available, from which we obtain results of BERT-LR for 286 patches
existing in common between our dataset and theirs.

Another ML-based tool, ODS [60], also trains a classiication model using the XGBoost library [5]. Unlike [49],
ODS uses hand-crafted code features. For example, one of the features determines whether a patch uses a local
variable or a global variable. Another example of the feature determines whether a patch is to add a missing null
check. We compare Poracle with ODS, using 332 patches existing in common between our dataset and theirs. 9

Evaluation Metrics. We use standard metrics, precision, recall, and F-measure deined as follows.

9While the ODS replication package is available (i.e., their benchmark results can be reproduced), the ODS łtoolž was not available (i.e., a new

benchmark cannot be applied) at the time of conducting the experiments.

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 23

Table 4. Comparison between Poracle, PATCH-SIM, and Opad

Patches Precision Recall F-measure

Project
Incorrect Correct Poracle

PATCH
OPAD Poracle

PATCH
OPAD Poracle

PATCH
OPAD

-SIM -SIM -SIM

Chart 24 / 24 2 / 2 100% / 100% 100% / 100% 67% / 67% 71% / 71% 58% / 58% 8% / 8% 83% / 83% 73% / 73% 14% / 14%

Lang 11 / 32 4 / 19 100% / 100% 100% / 65% 50% / 50% 82% / 59% 54%/ 34% 9% / 3% 90% / 74% 70% / 45% 15% / 6%

Math 64 / 250 19 / 98 100% / 99% 100% / 96% 81% / 68% 62% / 59% 52% / 26% 27% / 16% 77% / 74% 68% / 41% 41% / 26%

Time 13 / 20 2 / 13 100% / 100% 100% / 100% 100% / 100% 77% / 63% 69% / 50% 54% / 40% 87% / 77% 81% / 67% 70% / 57%

Total 112 / 326 27 / 132 100% / 99% 100% / 92% 82% / 71% 70% / 60% 55% / 31% 24% / 16% 82% / 75% 71% / 46% 37% / 26%

For a fair comparison, we use two diferent datasets: (1) 139 (=112+27) patches used in the study of PATCH-SIM [56] and (2) the extended dataset

shown in Table 3. In notation �/�, � and � represent the data for the irst dataset and the extended dataset, respectively. In each row, the best

results are highlighted.

Table 5. Comparison between Poracle and BERT-LR

Project
Patches Precision Recall F-measure

Incorrect Correct Poracle BERT-LR Poracle BERT-LR Poracle BERT-LR

Chart 24 / 24 2 / 2 100% / 100% 100% / 100% 71% / 71% 67% / 67% 83% / 83% 80% / 80%

Lang 11 / 24 4 / 8 100% / 100% 100% / 86% 82% /58% 10% / 25% 90% / 73% 18% / 39%

Math 64 / 167 19 / 42 100% / 99% 100% / 99% 66% / 63% 36% / 44% 80% / 77% 53% / 61%

Time 13 / 16 2 / 3 100% / 100% 100% / 100% 77% / 69% 23% / 25% 87% / 82% 37% / 40%

Total 112 / 231 27 / 55 100% / 99% 100% / 98% 70% / 64% 38% / 43% 82% / 78% 55% / 60%

For a fair comparison, we use two diferent datasets: (1) 139 (=112+27) patches used in the study of PATCH-SIM [56] (the same as in

Table 4) and (2) 286 (=231+55) patches, which are the intersection between the dataset available in [49] and our extended dataset

(Table 3).

��������� =
(the number of rejected incorrect patches)

(the total number of rejected patches)

������ =
(the number of rejected incorrect patches)

(the total number of incorrect patches)

� -������� =
2

1
������

+ 1
���������

6.2 Experimental Results

6.2.1 RQ1: Performance. Table 4 compares the performance of Poracle with PATCH-SIM and Opad. In the table,
the łPatches" column shows the number of incorrect/correct patches in our dataset. We use notation �/� where
� and � represent the data for the PATCH-SIM dataset and the extended dataset (Table 3), respectively. This
distinction is made to show the PATCH-SIM results reported by its authors verbatim [56] for the PATCH-SIM

dataset. We use the same notational convention for łPrecision", łRecall", and łF-measurež columns to distinguish
the results from the two datasets; in notation �/�, � and � represent the result for the PATCH-SIM dataset and the
extended dataset, respectively. In each row of the table, the best results are highlighted.

Poracle signiicantly outperforms PATCH-SIM and Opad across all four projects. The recall of Poracle reaches
60% (197/326), which is about 2 times and 4 times higher than PATCH-SIM (31%) and Opad (16%), respectively.

ACM Trans. Softw. Eng. Methodol.

24 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

Table 6. Comparison between Poracle and ODS

Project
Patches Precision Recall F-measure

Incorrect Correct Poracle ODS Poracle ODS Poracle ODS

Chart 23 / 23 2 / 2 100% / 100% 100% / 100% 70% / 70% 57% / 57% 82% / 82% 73% / 73%

Lang 10 / 26 3 / 10 100% / 100% 100% / 78% 80% / 58% 90% / 96% 89% / 73% 94% / 86%

Math 60 / 177 19 / 64 100% / 99% 92% / 90% 68% / 61% 55% / 84% 81% / 75% 69% / 87%

Time 13 / 16 2 / 7 100% / 100% 92% / 70% 77% / 69% 85% / 88% 87% / 82% 88% / 78%

Total 106 / 242 26 / 83 100% / 99% 94% / 88% 71% / 62% 62% / 83% 83% / 76% 74% / 85%

For a fair comparison, we use two diferent datasets: (1) 132 (=106+26) patches used in the study of PATCH-SIM [56]Ð7

patches are excluded since ODS results are missing for those 7 patches (conirmed by the ODS authors)Ðand (2) 325 (=242+83)

patches, which are the intersection between the dataset available in [60] and our extended dataset (Table 3).

Also, the precision of Poracle reaches 99%10 (197/(197 + 2)), which is higher than that of PATCH-SIM (92%) and
Opad (71%). Opad, for which we use the same fuzzer used in Poracle, shows the lowest performance, indicating
the importance of using speciication. The F-measure is also highest in Poracle across all four subjects.

Table 5 compares the performance of Poracle with BERT-LR [49]. We use the same notation �/� as before. Our
result shows that Poracle outperforms BERT-LR as well. The recall of Poracle (64%) is about 1.5 times higher
than that of BERT-LR (43%), while the precision is high both in Poracle (99%) and BERT-LR (98%). As a result, the
F-measure is higher in Poracle than in BERT-LR.

Lastly, Table 6 compares Poracle and ODS. Poracle shows a higher recall than ODS in the PATCH-SIM dataset,
and the opposite result is observed from the other dataset. In terms of precision, Poraclemaintains high precision
(100% and 99%), whereas ODS shows a lower precision (94% and 88%) in the two datasets. Overall, ODS rejects
patches more aggressively, whether them being correct or incorrect. Figure 13 shows such a tendency clearly.
As shown in the left diagram, ODS rejects 52 more incorrect patches correctly than Poracle. However, the right
diagram11 shows the strength of Poracle over ODS, accepting 55 more correct patches. Our mixed result, (which
is also relected in the F-measure), poses the classic tradeof between sensitivity and speciicity of classiication.
However, considering the scarcity of correct patches [29], the cost of errorneously rejecting a correct patch is
very high, and our approach is advantageous over ODS in that regard. In fact, rejecting a correct patch should be
the last thing a patch validation tool does considering the objective of APRÐi.e., inding out a correct patch.

RQ1: Our approach Poracle correctly rejects signiicantly more number of incorrect patches than PATCH-SIM (x1.9),
Opad (x3.9), and BERT-LR (x1.5). Also, Poracle accepts almost all correct patches showing 99% precision, in contrast

to ODS that rejects the largest number of correct patches among 5 considered approaches.

6.2.2 RQ2-1: Consistency. Given that Poracle uses a fuzzer, diferent results may be obtained at each fuzzing
instance. PATCH-SIM shares the same issue due to its use of random test generation via Randoop [39]. To assess
this concern, we run Poracle and PATCH-SIM 10 times for the PATCH-SIM dataset.12 We use the same timeout as
in the previous experiments (10 mins for Poracle and 35 mins for PATCH-SIM).
Table 7 shows the results. The łRejected Consistentlyž column shows how consistently a patch is rejected,

using notation X / Y where Y represents the number of patches that are rejected at least once out of 10 trials,
while X represents the number of patches that are rejected in all 10 trials. The łAccepted Consistentlyž column
similarly uses the X / Y notation. Note that PATCH-SIMÐwhich uses a score-based approachÐneither accepts nor

10Two correct patches are rejected due to that the imperfect preservation conditions we used. Instead of engineering our preservation

conditions, we used the preservation conditions prepared based on our understanding on the bugs.
11To compensate for a small number of correct patches, we also include developer patches.
12We use a smaller dataset to accommodate extended experimental time.

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 25

(a) Correctly rejected patches (b) Correctly accepted patches

Fig. 13. Comparison between Poracle and ODS. ODS tends to reject patches aggressively (see (a)), even rejecting
many correct patches (see (b)).

Table 7. Consistency of patch correctness classification

Project
Rejected Consistently Accepted Consistently

Poracle PATCH-SIM Poracle PATCH-SIM

Chart 17 / 17 11 / 14 9 / 9 7 / 10

Lang 9 / 9 5 / 5 6 / 6 5 / 7

Math 42 / 42 19 / 25 41 / 41 44 / 57

Time 10 / 10 0 / 1 5 / 5 7 / 7

Total 78 / 78 35 / 45 61 / 61 63 / 81

Notation X / Y represents that Y patches are rejected/accepted at least once, and X patches

are rejected/accepted in all 10 trials.

rejects a patch when the timeout (35 mins) is reached or the tool crashes. We exclude those cases from the table.
Our results show that Poracle returns consistent results across all 10 trials, in contrast to PATCH-SIM.

One possible explanation for our result is that an input causing a behavioral diference between patched and
pre-patched versions is often nearby the original input. If that is the case, a patch is likely to be rejected in a
short amount of time during the fuzzing process.

RQ2-1: Poracle showed consistent results in our experiments even though it utilizes a fuzzer.

6.2.3 RQ2-2: Time Eficiency of Fuzzing. We measure the time it takes for our fuzzer to reject a patch once started
while the manual cost of writing a preservation condition is assessed with the user study described in Section 6.4.

The box-plot of Figure 14 shows the distribution of running time of Poracle and PATCH-SIM when both tools
are run 10 times. The experiment is conducted on our extended dataset.13 We compare Poracle with PATCH-SIM

because both approaches perform dynamic analysis by running the pre-patched and patched versions. We used
the same setting of PATCH-SIM as described in Section 6.1. To avoid diferent classiication results for each session,
we used in all 10 sessions the same random tests Randoop generated. Recall that PATCH-SIM uses Randoop to
prepare test cases. We measured the running time PATCH-SIM spent for patch classiication and did not include
the time taken to generate tests.

13Timeout results of PATCH-SIM are excluded from the plot.

ACM Trans. Softw. Eng. Methodol.

26 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

Chart Lang Math Time
Project

0

250

500

750

1000

1250

Ti
m

e
(s

)

PATCH-SIM
Poracle

Fig. 14. Distribution of the execution time

Meanwhile, comparison with Opad is not considered, since we simulate Opad using our custom fuzzer used in
Poracle. The two ML-based approaches are not considered either. They do not involve running the program and
inish almost instantly.

In the plot, X and Y axes show the subject projects and the duration (in sec), respectively. The overall average
running time of Poracle is 32.57s, which is about 8 times faster than PATCH-SIM (257.26s). This result again
suggests that many incorrect patches can be easily rejected via fuzzing. This is in contrast to the earlier work
using fuzzing [11, 59] where fuzzing is conducted for several hours. The key diference is that our approach can
be applied at both the unit level and the system level, whereas in the earlier studies, fuzzing was conducted only
at the system level. Note that the majority of the Defects4J tests are unit tests. We also note that the results
shown in Figure 14 do not include the time spent writing preservation conditions. In Section 6.4, we show our
user study results, including time information.

RQ2-2: The diferential fuzzing module of Poracle detected incorrect patches about 8 times faster than PATCH-SIM,

the state-of-the-art dynamic patch classiication technique.

6.2.4 RQ2-3: Ablation Study on Preservation Conditions. To see the eicacy of preservation conditions, we
conduct an ablation study by removing preservation conditions from our generalized tests. With these modiied
tests, all output diferences are considered as evidence for patch incorrectness. Table 8 shows our results where
the łPoraclež and łw/o P.Cž column represent the results with and without preservation conditions, respectively.
While about the same number of incorrect patches are rejected correctly (197 vs 196), a larger number of correct

patches are rejected incorrectly when preservation conditions are removed (2 vs 63).
Not using a preservation condition can be simulated by using the preservation condition, łtruež. As described

in Section 5.2.1, if an over-approximate preservation condition is used, it may result in the rejection of a correct
patch or the coincidental rejection of an incorrect patch based on wrong evidence. The latter happens when the
observed output diference is not due to a regression error.

To check how often an incorrect patch is only coincidentally rejected, we perform the following. Given input �
that causes an output diference between a pre-patched version � and its patched version � ′, we compute the
output of the correct version �� available in the benchmark. If �� and �

′ produce the same output, we consider
that the patch was coincidentally rejected because the observed output diference between � and � ′ does not
indicate a regression error. In our ablation study, we found that 73 patches are only coincidentally rejected. In
comparison, when preservation conditions are used, we observe no coincidental rejection.

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 27

Table 8. Comparison between (1) Poracle and (2) Poracle without preservation conditions (column łw/o P.Cž)

Patches Rejected Correctly Rejected Incorrectly Rejected Coincidentally

Project
Incorrect Correct Poracle

w/o
Poracle

w/o
Poracle

w/o

P.C P.C P.C

Chart 24 / 24 2 / 2 17 / 17 19 / 19 0 / 0 1 / 1 0 / 0 3 / 3

Lang 11 / 32 4 / 19 9 / 19 7 / 14 0 / 0 3 / 16 0 / 0 2 / 11

Math 64 / 250 19 / 98 42 / 148 45 / 148 0 / 2 7 / 46 0 / 0 12 / 58

Time 13 / 20 2 / 13 10 / 13 10 / 15 0 / 0 0 / 0 0 / 0 1 / 1

Total 112 / 326 27 / 132 78 / 197 81 / 196 0 / 2 10 / 63 0 / 0 18 / 73

In notation �/�, � and � represent the data for the irst dataset and the data for the extended dataset, respectively.

Table 9. Results for developer patches

Project Patches
Errorneously Rejected

Poracle Opad PATCH-SIM ODS BERT-LR

Chart 13 0 1 3 3 7

Lang 10 0 2 3 4 3

Math 45 1 6 8 17 14

Time 9 0 0 2 4 6

Total 77 1 9 16 28 30

In each row, a better performing tool is highlighted.

RQ2-3: We summarize our indings as follows:

• In a large portion of the patches (72%)Ð(196 + 63 + 73)/(326 + 132)aÐoutput diference is observed between
patched and pre-patched versions, showing the eicacy of using a parameterized test with fuzzing.

• However, only 60% of these inputsÐ196/(196 + 63 + 73)Ðaccurately evidence the incorrectness of the patches.

• By using preservation conditions, those wrong evidences for rejection are iltered out.

• These results suggest that many incorrect patches can be correctly iltered out via the combination of fuzzing
and preservation conditions.

aThis ratio is computed with the results from the extended dataset. Similar results are obtained from the PATCH-SIM dataset. Recall that

the extended dataset is the superset of the PATCH-SIM dataset.

6.2.5 RQ2-4: Application Scope. To assess the performance with wider ranges of patches, we use the 77 developer-
written correct patches for the 77 buggy versions in our dataset which tend to be longer than the tool-generated
patches; the tool-generated patches in our dataset use on average 2.81 lines and 14.15 words, whereas the
developer patches use on average 5.83 lines and 29.29 words. Table 9 shows the result. Poracle shows almost

perfect performance, rejecting only one correct patch for the Math-71 bug in Defects4J. 14 As described in
Section 5.2.1, our method can reject a correct patch if the preservation condition is over-approximate. For the
Math-71 bug, we used the assertion used in the original test as a preservation condition, which turns out to be
over-approximate.

14ODS also rejects the same correct patch.

ACM Trans. Softw. Eng. Methodol.

28 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

(a) Overall results

0 100 200
Before filtering

0

100

200

Af
te

r f
ilt

er
in

g

(b) Results for the patches whose original rankings are
below 200

Fig. 15. The number of patches to review before (X-axis) and ater (Y-axis) applying Poracle

Meanwhile, the other four tools incorrectly reject a higher number of correct patches. The result of the
two ML-based techniques (ODS and BERT-LR) are particularly alarmingÐabout 36% and 39% of the patches are
errorneously rejected in ODS and BERT-LR, respectively.

RQ2-4: Poracle almost always does not reject human-written correct patches, which indicates that the tool is

not overitting to auto-generated patches. In comparison, the existing approaches often misjudge human-written

patches and reject them erroneously.

6.3 RQ3: Assessing Cost Reduction

As mentioned in Section 1, recent APR systems [4, 11, 12, 53] return a list of plausible patches. Sifting out a
correct patch from a large number of incorrect patches is a costly process. Patch classiication (PC) techniques
such as Poracle can help reduce costs by iltering out incorrect patches from the list. We conduct a separate
experiment to assess the cost reduction achieved by Poracle.

6.3.1 Experimental Setings. To estimate cost reduction with an actual APR system, we collect patches from
JAID [4], a state-of-the-art APR tool that returns a ranked list of patches. We apply JAID to the 77 Defects4J buggy
versions for which we have generalized tests and obtain the ranked lists of plausible patches from 28 versions.
For the remaining versions, JAID fails to generate plausible patches.

In this experiment, we measure how many patches should be reviewed before and after applying Poracle (with
10-min timeout), assuming that patches are reviewed in the order of their rankings. Before applying Poracle, the
number of patches to review is identical to the ranking of the correct patch, if one exists in the list. If there is no
correct patch in the list, we report the total number of patches in the list. Please note that to determine whether a
patch is correct or not, we use the correctness labels provided by the authors of JAID.15

Once Poracle is applied, a correct patch that was originally ranked at the �-th position is re-ranked to the
(� −�)-th position if (1)� incorrect patches that were ranked higher than the correct patch are iltered out by
Poracle, and (2) the correct patch is not iltered out. If the ranked list does not contain a correct patch, we report
the number of patches that remain after applying Poracle, since the users, without knowing whether there exists
a correct patch in the list, will need to review the remaining patches.

15https://bitbucket.org/maxpei/jaid/wiki/Home

ACM Trans. Softw. Eng. Methodol.

https://bitbucket.org/maxpei/jaid/wiki/Home

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 29

Chart Lang Math Time
Project

0

5

10

15

20

Co
m
pl
ex

ity

Fig. 16. The violin plot showing the complexities of our preservation conditions

6.3.2 Experimental Results. Figure 15(a) shows our results. In the igure, each data point denotes a bug in the
Defects4J benchmark [19]. The X and Y axes represent the number of patches to review before and after applying
Poracle, respectively, until either the correct patch is found or all patches are reviewed and no correct patch is
found. Figure 15(b) shows a closer look at the results for the patches whose original X-values are below 200. Note
that all data points are located under the red diagonal line, indicating that correct patches are detected either
earlier or at the same time as they would be without employing our method. In most cases (20 out of 28), the
number of patches to review decreases (i.e., data points are close to the X-axis). For example, in Chart9, a correct
patch originally ranked at 45th is ranked up to 18th after applying Poracle. Also, in Math28, all 1220 incorrect
patches in the list are iltered out. Overall, our approach reduces the number of patches to review by 108 patches
per version, resulting in a reduction ratio of 39.83%.
We also processed the same JAID patches with PATCH-SIM using the setting described in Section 6.1. In our

experiment, PATCH-SIM ilters out incorrect patches more aggressively than Poracle, resulting in a reduction ratio
of 70.6%. F-measure is also higher with PATCH-SIM at 91% compared to 79% with Poracle. It is important to note,
however, that PATCH-SIM also ilters out 12 correct patches out of 14 generated by JAID, whereas Poracle retains
all correct patches. Our results suggest that by using Poracle, developers can reduce the number of patches to
review while retaining all correct patches, which is diicult to be achieved with PATCH-SIM or other score-based
approaches.

RQ3: Poracle reduces the number of patches to review by 39.83% per version while retaining all correct patches.

6.4 RQ4: Assessing Usability

Our experience suggests that it is straightforward to generalize existing failing tests with preservation conditions.
Figure 16 shows the complexities of the 77 preservation conditions we wrote.16 We estimate the complexities of
the preservation conditions by counting the number of operators (e.g.,>, >=, && and | |) used in a preservation
condition. As shown in Figure 16, the preservation conditions we wrote are quite simple, using, on average, only
1.58 operators. To assess the usability of our approach more objectively, we conduct a user study.

6.4.1 User Study Setup. We conducted a user study with 66 junior/senior undergraduate students in a third-year
course (Software Engineering) at Ulsan National Institute of Science and Technology in 2022. Figure 17 displays

16We trim the tails of the violin plots that are beyond the range of the data. Note that a violin plot is often stretched (smoothed) out beyond the

range of the data.

ACM Trans. Softw. Eng. Methodol.

30 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

1-3 years
60.0%

4-6 years 35.0%

7-9 years

5.0%
1-3 years
4-6 years
7-9 years

Fig. 17. The number of years our participants had been programming

the number of years our participants had been programming. To motivate the participants, grade compensation
was provided.

To conduct the user study, we prepared four questions, each consisting of a buggy version, a failing test, and
10 patches. We extracted all buggy versions from the Defects4J benchmark [19]; see the łBug IDž column of
Table 10. We used the following criteria to select the buggy versions and the patches:

• Each buggy version requires a diferent pattern of preservation conditions; see the łPatternž column of
Table 10.
• Our method is designed for developers having domain-speciic knowledge of the buggy version. To meet
this assumption, we selected three buggy versions extracted from the Apache Commons Math project17

and one buggy version extracted from Apache Commons Lang project18. These two projects implement
common operations for math and string manipulation with which the participants are likely to be familiar.
• All patches should pass the failing test.
• For each version, we used the ground-truth patch available in the Defects4J benchmark as a correct patch.
• For each version, we randomly selected nine incorrect patches from those Poracle successfully iltered out
in our experiments presented in Section 6.2.

In Table 10, the łComplexityž column shows the complexities of the ground-truth preservation conditions for each
question. Compare them with the łPattern Complexityž column showing the mean complexity of the preservation
conditions for each pattern; we collect all preservation conditions for each pattern and then compute the mean
complexity of them.

We compare the user experience of patch assessment between the following two patch assessment methods:

(1) Manual patch assessment: The user identiies a correct patch out of 10 given patches consisting of one
correct patch and nine incorrect patches. Poracle is not used in this case.

(2) Semi-automatic patch assessment using Poracle: The user extends a failing test with a preservation
condition and runs Poracle to identify a correct patch out of the same 10 patches as used in manual patch
assessment. To make sure the participants do not manually ind a correct patch, we instructed them to
submit the result they obtained using Poracle.

We do not include fully-automated patch classiication techniques mentioned in Section 6.2, because those
methods do not change the manual patch assessment process Ð i.e., given a list of patches ranked top 10, the
developer looks for a correct patch. In both assessment methods (manual and ours), we provided the participants
with the necessary domain knowledge to write correct answers, such as API documents. We compare the correct

17https://commons.apache.org/proper/commons-math/
18https://commons.apache.org/proper/commons-lang/

ACM Trans. Softw. Eng. Methodol.

https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-lang/

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 31

Table 10. Four questions used in the user study.

Question
Group

Bug ID Complexity Pattern
Pattern

Group 1 Group 2 Complexity

Q1 Poracle Manual Math-73 10 CC (Complementary Cases) 2.75

Q2 Poracle Manual Math-105 1 EGA (Existing Assertion) 2.24

Q3 Manual Poracle Math-28 0 UE (Unexpected Exception) 0

Q4 Manual Poracle Lang-58 1 RI (Reference Implementation) 2.08

answer ratio between the experimental group (in which Poracle is used) and the control group (in which manual
assessment is used).

Since our user-study participants are not familiar with APR and preservation conditions, we provided a single
session of a 75-minute tutorial on APR, preservation conditions, and how to use Poracle. We did not provide the
guideline on how to write preservation conditions described in Section 5.3. We will discuss how this afects the
results in Section 6.4.3.
We provided the user with a docker container where Poracle is installed. The container also contains the

materials for the four questions, where each question consists of the following materials.

• Source code for the buggy version
• A failing test for the buggy version
• Editors including Vim, Emacs, and Nano
• A script to run the failing test
• 10 patch candidates, all of which pass the given failing test
• A script to run Poracle

Only the last one is used exclusively in the experimental group. The remaining materials are used in both groups.
We randomly divided the 66 participants into two groups and assigned each group four questions Ð two for

manual patch assessment and two for semi-automatic patch assessment. The łGroupž column of Table 10 shows
how we distribute the four questions into the two groups. For each question, we prepared two versions Ð one
for the control group and the other one for the experimental group. Both question versions are extracted from
the same bug of Defects4J [19], as shown in the łBug IDž column. For each question, we distributed its two
versions into the two groups. For example, for Q1, we prepared two versions of the question extracted Math-73
and assigned the semi-automatic assessment version to the irst group and the manual assessment version to the
second group. This study design is to prevent the result of one version of a question � (say, the semi-automatic
assessment version of �) from being afected by another version of the same question (the manual assessment
version of�). The four questions we used in the study cover all four patterns of preservation invariants described
in Section 4.3, as shown in the łPatternž column.

6.4.2 User Study Results. As shown in Figure 18(a), the correct answer ratio is higher in the experimental group
where Poracle is used than in the control group where patches are manually assessed. When evaluating the
participants’ answers, we gave either 1 point (if an answer is correct) or 0 point (if an answer is wrong). While
the result suggests that using Poracle can help the users ind correct patches by iltering out incorrect ones,
the overall correctness ratios are not very high. However, Figure 18(b) and 18(c) provide diferent perspectives.
After the semester was over, we split the 66 students into two groups, the top 50% students and the last 50%
students, based on their total scores accumulated throughout the semester (e.g., exam scores and assignment
points), except for the compensation points assigned for the user study. The correctness ratios are clearly higher
in the top-50% group than in the last-50% group, suggesting that high-performing participants make better use

ACM Trans. Softw. Eng. Methodol.

32 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

Q1 Q2 Q3 Q4
Question

0

20

40

60

80

100
Co

rre
ct

 a
ns

we
r r

at
io

 (%
)

Poracle
Manual

(a) All students

Q1 Q2 Q3 Q4
Question

0

20

40

60

80

100

Co
rre

ct
 a

ns
we

r r
at

io
 (%

)

(b) Top 50% students

Q1 Q2 Q3 Q4
Question

0

20

40

60

80

100

Co
rre

ct
 a

ns
we

r r
at

io
 (%

)

Poracle
Manual

(c) Last 50% students

Fig. 18. Correct answer ratios

Q1 Q2 Q3 Q4
Question

0

1000

2000

3000

4000

5000

6000

Ti
m

e
(s

)

Poracle
Manual

(a) All students

Q1 Q2 Q3 Q4
Question

0

1000

2000

3000

4000

5000

6000

Ti
m

e
(s

)

Poracle
Manual

(b) Students who submited correct answers

Fig. 19. Manual time cost

of Poracle. In addition, the score diferences between the two methods (Poracle and manual) are statistically
signiicant (p-value < 0.05; we have conducted the Mann-Whitney rank test [30]).

Meanwhile, the box plots in Figure 19 compare the manual time cost involved in each method Ð i.e., the time
taken to write preservation conditions (Poracle) and the time to review 10 patches (Manual). When considering
all students, the manual time cost of writing a preservation condition is higher than that of the manual method
(see Figure 19(a)). However, if we consider only those who submitted correct answers (they better represent
the groups who used each method efectively), the gap between the two methods is only marginal as shown
in Figure 19(b); the median times between the two methods are almost the same and there is no statistically
signiicant diference between the two methods (p-value < 0.05 from the Mann-Whitney rank test).

Apart from the correctness ratio, we also asked the participants about their experiences in using the two patch
assessment methods they used. As shown in Figure 20(a), more participants expressed a positive experience with
using Poracle than with the manual method (48% vs. 35%). The high-performing group responded similarly (58%
vs 41%), as shown in Figure 20(b). In both igures, the response diferences between the two methods (Poracle
and manual) are statistically signiicant (p-value < 0.05 from the Mann-Whitney rank test).

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 33

0 20 40 60 80 100
Percentage

Very Positive

Positive

Neutral

Negative

Very Negative

Re
sp

on
se

19%

29%

33%

11%

8%

12%

23%

42%

17%

6%

Poracle
Manual

(a) All students

0 20 40 60 80 100
Percentage

Very Positive

Positive

Neutral

Negative

Very Negative

Re
sp

on
se

28%

30%

28%

11%

4%

19%

22%

38%

14%

8%

Poracle
Manual

(b) Top 50% students

Fig. 20. Experiences about the two patch assessment methods

Poracle

87.3%

Manual

12.7%

Fig. 21. Poracle vs Manual

Lastly, we asked the participants to choose a preferred patch assessment method between the two methods
they used. Most participants chose the semi-automatic assessment method using Poracle over the manual one, as
shown in Figure 21.

6.4.3 Discussion about the User Study Results. We believe that our method is cost-efective for several reasons.
Once a preservation condition is written, it can be reused to ilter out any number of incorrect patches ixing the
same bug. As shown in Section 6.3, the one-time cost of writing preservation condition can be compensated by
iltering out tens and hundreds of incorrect patches. In addition, when a regression error occurs in the future,
preservation conditions can be reused to ilter out incorrect patches for that error.

Our approach is intended for developers who want more control over the patch classiication process. Indeed,
our user study results suggest that our approach is more likely to be useful for advanced developers. Top-50%
students used our approach more efectively, and their opinions on our approach were more positive than those
of bottom-50% students.
Similar to other speciication-based approaches, the efectiveness of our approach depends on the quality of

the preservation conditions the users wrote. Table 11 displays the distributions of correct, over-approximate,

ACM Trans. Softw. Eng. Methodol.

34 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

Table 11. Distributions of correct, over-approximate, under-approximate, andwrong p.c. (preservation conditions)
writen by the participants.

Question
Ground-Truth

Correct p.c. Over-approximate p.c. Under-approximate p.c. Wrong p.c.
Pattern

Q1 CC 21 2 5 5

Q2 EGA 25 0 1 7

Q3 UE 18 0 9 6

Q4 RI 17 1 7 8

Table 12. Frequency of (in)correct patches submited by the participants for each category of p.c. (preservation
condition) described in Table 11.

Question
Ground-Truth Correct p.c. Over-approximate p.c. Under-approximate p.c. Wrong p.c.

Pattern Correct Correct Incorrect Correct Incorrect Correct Incorrect

Q1 CC 21 0 2 0 5 0 5

Q2 EGA 25 0 0 0 1 0 7

Q3 UE 18 0 0 0 9 0 6

Q4 RI 17 0 1 0 7 0 8

Table 13. Distributions of participants’ incorrect answers and incorrect paterns.

Question
Ground-Truth Incorrect Incorrect

Pattern Answer Pattern

Q1 CC 12 7

Q2 EGA 8 7

Q3 UE 15 15

Q4 RI 16 11

under-approximate, and wrong preservation conditions written by the participants. Please refer to Section 5.2.1
for the deinitions of over-approximate, under-approximate, and wrong preservation conditions.19 We compared
the preservation conditions written by the participants with the ground-truth preservation conditions used in our
tool experiments (Section 6.2). As demonstrated in Table 12, participants in our study submitted incorrect answers
(i.e., failed to identify the correct patch) when they used incorrect (i.e., over-approximate, under-approximate or
wrong) preservation conditions. When an under-approximate preservation condition is used, 10 participants
identiied multiple patches, including the ground-truth patch, as correct, instead of selecting just one. This can
happen because an under-approximate preservation condition may fail to ilter out all incorrect patches (see
Figure 9(a)).
In Section 5.3, we discussed the guidelines for writing preservation conditions. To assess the efectiveness

of the guideline had we provided it, we collected the participants’ preservation conditions that led to incorrect
answers, and analyzed how often they used the same preservation condition patterns as those used in the
ground-truth ones. As shown in Table 13, our participants often used incorrect patterns diferent from those
used in the ground-truth preservation conditions when they failed to identify the correct patch. We hypothesize

19Uncompilable conditions are considered as łwrongž.

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 35

that providing the guidelines could help developers in writing correct preservation conditions, which should be
investigated in future work.

RQ4: Our user-study participants were more successful in inding correct patches when using Poracle as compared

to when they did not use it. And a larger number of participants reported a positive experience with using Poracle

compared to the manual approach.

7 THREATS TO VALIDITY

External Validity: Our indings might not be valid for patches that are not in our dataset. Also, the distribution
of correct and incorrect patches may be diferent depending on an APR tool used to generate the patches. To
mitigate this threat, we conducted experiments with an extended dataset in addition to the PATCH-SIM dataset
and obtained similar results from both datasets.
For the 77 buggy versions in our dataset, we could successfully write preservation conditions using the four

patterns (i.e., UE, CC, EGA and RI). However, there could be cases that cannot be covered with these four patterns
and we do not claim that they are exhaustive. Instead, we would like to point out that our approach is designed
to be generic. Developers can apply our approach as long as they can express preservation conditions using the
preserveIf and failToPreserve methods we provide.
Regarding the user study, our indings may not be generalized to all programmers. However, we note that

our participants are junior/senior students majoring in computer science who can be considered entry-level
developers. When writing a preservation condition, diferent levels of familiarity of participants with the subject
code may confound the result. To mitigate this threat, the code in our survey questions deals with mathematical
computation (Math-73, Math-105, and Math-28) or string manipulation (Lang-58) to which our participants are
likely to have similar levels of understanding.
Internal Validity: To decide whether the classiication result is correct, we use the labels prepared manually by
other researchers in previous works [27, 56], which is subject to bias. Also, generalized tests prepared by us are
subject to bias, though the existing failing tests clearly reveal bug ixing intention for most bugs in our dataset.
To mitigate the threat posed by using manual labels and speciications, we validate all rejection decisions with
ground-truth versions available in the Defects4J benchmark. Speciically, given an obtained input � that causes a
behavioral diference between patched and pre-patched versions, we run the correct version with the same input
� . If the correct version and the patched version produce diferent outputs for � , the patch is indeed incorrect.
Through this process, we identiied four misclassiied patches and used rectiied labels in the experiments.

In the user study, we provided the participants with 10 patches for each buggy version. However, the number
of patches may vary depending on the APR tool used to generate the patches and this may afect the result of
the user study. In this work, we treat the number of patches as a constant and do not consider the efect of the
number of patches on the result.

Our user study was conducted assuming the developers have domain-speciic knowledge about their software
project. To fulill this assumption, we provided the study participants with materials such as API documents
from which they can extract domain-speciic knowledge, as described in Section 6.4. However, our study was
not conducted with the original developers of the subject software projects, and whether developers have
suicient knowledge to write a preservation condition should be investigated in a separate study. Nevertheless,
our experience with writing preservation conditions suggests that the developers are likely to have suicient
domain-speciic knowledge. Although we are not the original developers, we could write preservation conditions
based on API documents and bug reports.
In the user study, our participants used traditional editors such as Vim, and we did not provide an IDE

(Integrated Development Environment). Using an IDE could have afected the participants’ performance in both

ACM Trans. Softw. Eng. Methodol.

36 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

experimental and control groups since an IDE provides various useful features such as code completion and a
debugger. However, we chose not to provide an IDE because our participants are more accustomed to using Vim
than an IDE, since Vim is the primary editor used in most computer science courses they took.

8 CONCLUSION AND FUTURE WORK

In this work, we have explored the possibility of using a semi-automated approach for APR to mitigate its
overitting problem. Essentially, our approach automatically generates hold-out tests based on a snippet of
user information (i.e., a preservation condition). Our positive results suggest that there is room for research
on semi-automated approaches for APR. Given that the current APR systems often generate incorrect patches
and currently there is no automatic system to check the patch correctness reliably (current automatic patch
classiication techniques often make a wrong decision as shown in Section 6.2), semi-automatic approaches like
ours can be a practical solution to the overitting problem of APR.
One potential future research direction is to ind out an optimal way to interact with the user. An ideal

method will cause the minimum cognitive load to the user. Given that most APR systems use tests written by
the developers, utilizing those tests as done in this study can be one of the promising directions. While our
user-study results are supportive of our semi-automatic approach, a more extensive user study is needed to obtain
a deeper understanding of how developers perceive our approach, which we leave as future work.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No.2021R1A2C1009819, No.2021R1A5A1021944, No.2021R1I1A3048013) and the Institute for
Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (No.2021-0-01001).

REFERENCES

[1] Michael Buckland and Fredric Gey. 1994. The relationship between recall and precision. Journal of the American society for information

science 45, 1 (1994), 12ś19.

[2] Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Nicolo Perino, and Mauro Pezze. 2013. Automatic recovery from runtime

failures. In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 782ś791.

[3] Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, andMauro Pezzè. 2010. Automatic workarounds for web applications. In Proceedings

of the eighteenth ACM SIGSOFT international symposium on Foundations of software engineering. 237ś246.

[4] Liushan Chen, Yu Pei, and Carlo Alberto Furia. 2020. Contract-based program repair without the contracts: An extended study. IEEE

Transactions on Software Engineering (2020).

[5] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system. In ACM International Conference on Knowledge

Discovery and Data Mining (SIGKDD). 785ś794.

[6] Tsong Yueh Chen, DH Huang, TH Tse, and Zhi Quan Zhou. 2004. Case studies on the selection of useful relations in metamorphic

testing. In Proceedings of the 4th Ibero-American Symposium on Software Engineering and Knowledge Engineering (JIISIC 2004). Citeseer,

569ś583.

[7] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In International

Conference on Functional Programming (ICFP). 268ś279.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. In Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies. 4171ś4186.

[9] The Apache Software Foundation. 2023. The API document of the gcd method. https://commons.apache.org/proper/commons-

math/javadocs/api-3.6.1/org/apache/commons/math3/util/ArithmeticUtils.html#gcd(int,%20int). Accessed April 25, 2023.

[10] The Apache Software Foundation. 2023. The API document of the inverseCumulativeProbability method. https:

//commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/distribution/NormalDistribution.

html#inverseCumulativeProbability(double). Accessed April 25, 2023.

ACM Trans. Softw. Eng. Methodol.

https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/util/ArithmeticUtils.html#gcd(int,%20int)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/util/ArithmeticUtils.html#gcd(int,%20int)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/distribution/NormalDistribution.html#inverseCumulativeProbability(double)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/distribution/NormalDistribution.html#inverseCumulativeProbability(double)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/distribution/NormalDistribution.html#inverseCumulativeProbability(double)

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 37

[11] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. 2019. Crash-avoiding program repair. In Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis. 8ś18.

[12] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program repair via bytecode mutation. In Proceedings of the 28th

ACM SIGSOFT International Symposium on Software Testing and Analysis. 19ś30.

[13] Chris Hawblitzel, Ming Kawaguchi, Shuvendu K Lahiri, and Henrique Rebêlo. 2013. Towards modularly comparing programs using

automated theorem provers. In International Conference on Automated Deduction. Springer, 282ś299.

[14] Paul Holser. 2014. junit-quickcheck: Property-based testing, JUnit-style. https://pholser.github.io/junit-quickcheck/. Accessed August

30, 2021.

[15] JetBrains. 2000. IntelliJ IDEA. https://www.jetbrains.com/idea/. Accessed August 30, 2021.

[16] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018. Shaping program repair space with existing patches

and similar code. In ISSTA. ACM, 298ś309.

[17] Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally equivalent code fragments via random testing. In Proceedings

of the eighteenth international symposium on Software testing and analysis. 81ś92.

[18] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of Code Language Models on Automated Program Repair. In 2023

45th International Conference on Software Engineering. 1430ś1442.

[19] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of existing faults to enable controlled testing studies for

Java programs. In International Symposium on Software Testing and Analysis (ISSTA). 437ś440.

[20] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic Patch Generation Learned from Human-written Patches.

In ICSE. 802ś811.

[21] Hyungsub Kim, Muslum Ozgur Ozmen, Z Berkay Celik, Antonio Bianchi, and Dongyan Xu. 2023. PatchVerif: Discovering Faulty Patches

in Robotic Vehicles. In USENIX Security Symposium.

[22] YoungJae Kim, Seungheon Han, Askar Yeltayuly Khamit, and Jooyong Yi. 2023. Automated Program Repair from Fuzzing Perspective.

In 2023 32nd International Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for Computing

Machinery, New York, NY, USA, 854ś866. https://doi.org/10.1145/3597926.3598101

[23] Tien-Duy B Le, Jooyong Yi, David Lo, Ferdian Thung, and Abhik Roychoudhury. 2014. Dynamic inference of change contracts. In 2014

IEEE International Conference on Software Maintenance and Evolution. IEEE, 451ś455.

[24] C. Le Goues, ThanhVu Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic Method for Automatic Software Repair. IEEE

Transactions on Software Engineering 38, 1 (Jan 2012), 54ś72.

[25] Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Roşu, and Darko Marinov. 2016. How good are the specs? A study of the

bug-inding efectiveness of existing Java API speciications. In Proceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering. 602ś613.

[26] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Tbar: Revisiting template-based automated program repair. In

International Symposium on Software Testing and Analysis (ISSTA). 31ś42.

[27] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F Bissyandé, Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao,

and Yves Le Traon. 2020. On the eiciency of test suite based program repair: A systematic assessment of 16 automated repair systems

for java programs. In International Conference on Software Engineering (ICSE). 615ś627.

[28] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In POPL. 298ś312.

[29] Fan Long and Martin C. Rinard. 2016. An analysis of the search spaces for generate and validate patch generation systems. In ICSE.

702ś713.

[30] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of two random variables is stochastically larger than the other.

The annals of mathematical statistics (1947), 50ś60.

[31] Johannes Mayer and Ralph Guderlei. 2006. An empirical study on the selection of good metamorphic relations. In 30th Annual

International Computer Software and Applications Conference (COMPSAC’06), Vol. 1. IEEE, 475ś484.

[32] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking for Simple Program Repairs. In ICSE. 448ś458.

[33] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: scalable multiline program patch synthesis via symbolic analysis.

In ICSE. 691ś701.

[34] Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez Tejeda, Matthew Mokary, and Brian Spates. 2013. When a

patch goes bad: Exploring the properties of vulnerability-contributing commits. In 2013 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement. IEEE, 65ś74.

[35] Microsoft. 2021. Visual Studio Code. https://code.visualstudio.com/. Accessed August 30, 2021.

[36] Martin Monperrus. 2018. Automatic software repair: a bibliography. ACM Computing Surveys (CSUR) 51, 1 (2018), 1ś24.

[37] Amirfarhad Nilizadeh, Gary T Leavens, Xuan-Bach D Le, Corina S Păsăreanu, and David R Cok. 2021. Exploring true test overitting in

dynamic automated program repair using formal methods. In IEEE Conference on Software Testing, Veriication and Validation (ICST).

IEEE, 229ś240.

ACM Trans. Softw. Eng. Methodol.

https://pholser.github.io/junit-quickcheck/
https://www.jetbrains.com/idea/
https://doi.org/10.1145/3597926.3598101
https://code.visualstudio.com/

38 • Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

[38] Yannic Noller, Corina S Păsăreanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske. 2020. HyDif: Hybrid

diferential software analysis. In International Conference on Software Engineering (ICSE). IEEE, 1273ś1285.

[39] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. 2007. Feedback-directed random test generation. In International

Conference on Software Engineering (ICSE’07). IEEE, 75ś84.

[40] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: coverage-guided property-based testing in Java. In ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA). 398ś401.

[41] Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar. 2016. Shadow of a doubt: testing for divergences between software versions. In

International Conference on Software Engineering (ICSE). 1181ś1192.

[42] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques actually helping programmers?. In ISSTA. 199ś209.

[43] Theoilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and Suman Jana. 2017. Nezha: Eicient domain-independent

diferential testing. In IEEE Symposium on security and privacy (SP). IEEE, 615ś632.

[44] Arooba Shahoor, Askar Yeltayuly Khamit, Jooyong Yi, and Dongsun Kim. 2023. LeakPair: Proactive Repairing of Memory Leaks in

Single Page Web Applications. In 2023 38th International Conference on Automated Software Engineering (ASE 2023). To appear.

[45] Ridwan Sharifdeen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury. 2021. Concolic program repair. In Proceedings of the 42nd

ACM SIGPLAN International Conference on Programming Language Design and Implementation. 390ś405.

[46] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure worse than the disease? overitting in automated

program repair. In ESEC/FSE. 532ś543.

[47] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury. 2016. Anti-patterns in search-based program repair. In

International Symposium on Foundations of Software Engineering (FSE). 727ś738.

[48] Haoye Tian, Yinghua Li, Weiguo Pian, Abdoul Kader Kabore, Kui Liu, Andrew Habib, Jacques Klein, and Tegawendé F Bissyandé. 2022.

Predicting Patch Correctness Based on the Similarity of Failing Test Cases. ACM Transactions on Software Engineering and Methodology

(TOSEM) 31, 4 (2022), 1ś30.

[49] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein, and Tegawendé F Bissyandé. 2020. Evaluating

representation learning of code changes for predicting patch correctness in program repair. In International Conference on Automated

Software Engineering (ASE). IEEE, 981ś992.

[50] Nikolai Tillmann and Wolfram Schulte. 2005. Parameterized unit tests. ACM SIGSOFT Software Engineering Notes 30, 5 (2005), 253ś262.

[51] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou, Xiaoguang Mao, and Hai Jin. 2020. Automated patch

correctness assessment: How far are we?. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering.

968ś980.

[52] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-aware patch generation for better automated

program repair. In ICSE. ACM, 1ś11.

[53] Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues. 2021. VarFix: Balancing Edit Expressiveness and Search

Efectiveness in Automated Program Repair. In Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (FSE). 354ś366.

[54] Chunqiu Steven Xia and Lingming Zhang. 2022. Less training, more repairing please: revisiting automated program repair via zero-shot

learning. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software

Engineering. 959ś971.

[55] Qi Xin and Steven P Reiss. 2017. Identifying test-suite-overitted patches through test case generation. In International Symposium on

Software Testing and Analysis (ISSTA). 226ś236.

[56] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018. Identifying patch correctness in test-based program repair.

In International Conference on Software Engineering (ICSE). 789ś799.

[57] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu Zhang. 2017. Precise Condition Synthesis for Program

Repair. In ICSE. 416ś426.

[58] Bo Yang and Jinqiu Yang. 2020. Exploring the diferences between plausible and correct patches at ine-grained level. In 2020 IEEE 2nd

International Workshop on Intelligent Bug Fixing (IBF). IEEE, 1ś8.

[59] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better test cases for better automated program repair. In Joint Meeting

on Foundations of Software Engineering (FSE). 831ś841.

[60] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2021. Automated classiication of overitting patches with

statically extracted code features. IEEE Transactions on Software Engineering (2021).

[61] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2021. A comprehensive study of automatic program repair on the

QuixBugs benchmark. Journal of Systems and Software 171 (2021), 110825.

[62] Jooyong Yi and Elkhan Ismayilzada. 2022. Speeding up constraint-based program repair using a search-based technique. Information

and Software Technology 146 (2022), 106865.

[63] Jooyong Yi, Dawei Qi, Shin Hwei Tan, and Abhik Roychoudhury. 2013. Expressing and checking intended changes via software change

contracts. In Proceedings of the 2013 International Symposium on Software Testing and Analysis. 1ś11.

ACM Trans. Softw. Eng. Methodol.

Poracle: Testing Patches Under Preservation Conditions to Combat the Overfiting Problem of Program Repair • 39

[64] Jooyong Yi, Dawei Qi, Shin Hwei Tan, and Abhik Roychoudhury. 2015. Software change contracts. ACM Transactions on Software

Engineering and Methodology (TOSEM) 24, 3 (2015), 1ś43.

[65] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin Monperrus. 2019. Alleviating patch overitting with

automatic test generation: a study of feasibility and efectiveness for the Nopol repair system. Empirical Software Engineering 24, 1

(2019), 33ś67.

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Automated Program Repair (APR)
	2.2 Overfitting Problem
	2.3 Program Contracts
	2.4 Patch Evaluation

	3 A Motivating Example
	4 Our Approach: Poracle
	4.1 Generalizing a Failing Test with a Preservation Condition
	4.2 Expressing a Preservation Condition in a Test
	4.3 Examples of Preservation Conditions
	4.4 Differential Fuzzing

	5 Discussion
	5.1 Benefits of Our Approach
	5.2 Limitations of Our Approach
	5.3 A Guideline to Write a Preservation Condition
	5.4 Discussion about Automation
	5.5 Preservation Conditions vs. Conventional Test Assertions

	6 Assessment
	6.1 Experimental Settings
	6.2 Experimental Results
	6.3 RQ3: Assessing Cost Reduction
	6.4 RQ4: Assessing Usability

	7 Threats to Validity
	8 Conclusion and Future Work
	References

