
Received: 2 December 2016 Revised: 5 April 2019 Accepted: 26 April 2019

DOI: 10.1002/smr.2181

R E S E A R C H A R T I C L E - E M P I R I C A L

Watch out for this commit! A study of influential software
changes

Daoyuan Li1 Li Li1 Dongsun Kim1 Tegawendé F. Bissyandé1 David Lo2

Yves Le Traon1

1Interdisciplinary Centre for Security,

Reliability and Trust (SnT), University of

Luxembourg, Luxembourg City, Luxembourg
2School of Information Systems, Singapore

Management University, Singapore

Correspondence

Dongsun Kim and Tegawendé F. Bissyandé,

Interdisciplinary Centre for Security, Reliability

and Trust (SnT), University of Luxembourg,

Luxembourg City, Luxembourg.

Email: dongsun.kim@uni.lu;

tegawende.bissyande@uni.lu

Funding information

Fonds National de la Recherche Luxembourg,

Grant/Award Number: C15/IS/10449467 and

C15/IS/9964569

Abstract

One single code change can significantly influence a wide range of software systems and their

users. For example, (a) adding a new feature can spread defects in several modules, while (b)

changing an API method can improve the performance of all client programs. Unfortunately,

developers often may not clearly know whether code changes are influential at commit time.

This paper investigates influential software changes and proposes an approach to identify them

immediately when they are applied. Our goals are to (a) identify existing influential changes

(ICs) in software projects, (b) understand their characteristics, and (c) build a classification

model of ICs to help developers find and address them early. We first conduct a post-mortem

analysis to discover existing influential changes by using intuitions (eg, changes referred by other

changes). Then, we re-categorize all identified changes through an open-card sorting process.

Subsequently, we conduct a survey with about 100 developers to finalize a taxonomy. Finally,

from our ground truth, we extract features, including metrics such as the complexity of changes

and file centrality in co-change graphs to build machine learning classifiers. The experiment

results show that our classification model with random samples achieves 86.8% precision, 74%

recall, and 80.4% F-measure, respectively.

KEYWORDS

change prediction, change risk, influential change, software changes, software evolution

1 INTRODUCTION

Current development practices heavily rely on version control systems to record and keep track of changes committed in project repositories.

While many of the changes may be merely cosmetic or provide minor improvements, others have a wide and long-term influence on the entire

system and related systems. Brudaru and Zeller1 first illustrated examples of changes with long term-influence: (a) changing access privilege

(ie, private → public), (b) changing kernel lock mechanism, and (c) forgetting to check a null return. If we can predict whether an incoming

software change is influential or not—either positively or negatively—just after it is committed, it could significantly improve maintenance tasks

(eg, easing debugging if a new test harness is added) and provide insights for recommendation systems (eg, code reviewers can focus on fewer

changes).

The influence of a software change can, however, be hard to detect immediately since it often does not involve immediate effects to other

software elements. Instead, it can constantly affect a large number of aspects in the software over time. Indeed, a software change can be

influential not only inside and/or beyond the project repository (eg, new defects in the code base and new API calls from other programs), but

also immediately and/or long after the changes have been applied. The following are examples of such influential changes:

Adding a new lock mechanism: mutex-lock features were introduced in Linux 2.6 to improve the safe execution of kernel critical code

sections. However, after their introduction, the defect density of Linux suddenly increased for several years, largely contributed by erroneous

usage of these features. Thus, the influence of the change was not limited to a specific set of modules. Rather, it was a system-wide problem.

J Softw Evol Proc. 2019;e2181. wileyonlinelibrary.com/journal/smr © 2019 John Wiley & Sons, Ltd. 1 of 25

https://doi.org/10.1002/smr.2181

https://doi.org/10.1002/smr.2181
https://orcid.org/0000-0003-0272-6860

2 of 25 LI ET AL.

Changing build configurations: a small change in configuration files may influence the entire program. In Spring-framework, a developer

missed file inclusion options when migrating to a new build system (∗.aj files were missing in build.gradle* †). This makes an impact since

programs depending on the framework failed occasionally to work. The reason for this failure (missed file) was hard to pinpoint. This bug has

been fixed after 6 months after its introduction.

Improving performance for a specific environment: FastMath.floor() method in Apache Commons Math had a problem with Android

applications since it has a static code block that makes an application hang about 5 seconds at the first call. Fixing this issue improves the

performance of all applications using the library.

Unfortunately, existing techniques are limited to revealing the short- term impact of a certain software change. The short-term impact indicates

an immediate effect such as test case failure or coverage deviation. For example, dynamic change analysis techniques2,3 leverage coverage metrics

after running test cases. Differentiating coverage information before/after making a change shows how the change influences other program

elements. Other approaches are based on similarity distances.4,5 These firstly identify clusters of program elements frequently changed together

or tightly coupled by analyzing revision histories. Then, they attempt to figure out the best-matching clusters for a given change. Developers can

assume that program elements (eg, files or methods) in the cluster may be affected by the given change. Finally, change genealogy6-8 approaches

keep track of dependencies between subsequent changes and can capture some long-term impact of changes. However, it is limited to identifying

source code entities and defect density. Overall, all the above techniques may not be successful in predicting a wide and long-term influence of

software changes. This was unfortunately inevitable since those existing techniques focus only on explicit dependencies such as method calls.

1.1 Definition scoping for influential changes

– As hinted by the examples above, an influential change can occur in a different part of the code base, and may relate to a variety of concepts

(architecture, API, or algorithm implementations). We scope the definition of an influential change in this paper as a source code change which

may induce significant (ie, visible) changes in the behaviour/evolution of any of the three entities in the ecosystem of project development: the

code base, the end-users, or the developers. Thus, we consider the three following definitions in this paper:

• Code base - An influential change is any change that will motivate/necessitate other changes in the code base. Such a change affects the

internal development processes of code review, testing, etc. Examples of such changes include domino changes that are necessary to

perform collateral evolution when a popular API is invasively modified.

• User base - An influential change is any change that eventually impacts software adoption or its use. Such a change can occur in various

circumstances, as part of specific effort to attract/retain users (eg, change that focus on improving library API usability) or inadvertently

with user-undesired changes (eg, invasive change in a key feature).

• Developer team - An influential change is any change that impacts the dynamics among developers. Such a change can positively impact the

development team by stimulating development (eg, a fix of a blocking bug9) require developers to focus on re-learning about how the code

is built (eg, a major structural change) or address a standing issue that left the team in disagreement (eg, reverting a controversial change).

We recognize that these definitions are not exhaustive for identifying all changes that are potentially ‘‘influential.’’ Nevertheless, within the

scope of this paper, they allow for investigations on the risk of a code change, a topic that is still poorly studied in the literature.

1.2 Study research questions

In this study, we are interested in investigating the following research questions:

(RQ1) What constitutes an influential software change? Are there developer-approved definitions/descriptions of influential software changes?

(RQ2) What metrics can be used to collect examples of influential software changes?

(RQ3) Can we build a classification model to identify influential software changes immediately after they are applied?

1.3 Terminology

In this work, we use several terms that require explicit definitions to avoid confusion. The following are the most recurrent terms:

post-mortem analysis: we use this expression to refer to investigations of changes whose impact on the software ecosystem has become

apparent (eg, a change that stops all discussion on a specific issue).

Anomaly: we use this term to refer to a metric whose value is out of the ordinary. It is determined via outlier detection in a series of

measurements.

Change behaviour: we use this expression to refer to the observable metrics associated with a series of changes in a software project. The

average delay between two commits (ie, the rhythm of commits) is part of an example of change behaviour observation.

* Commit a681e574c3f732d3ac945a1dda4a640ce5514742
† Bug report https://jira.spring.io/browse/SPR- 9576

https://jira.spring.io/browse/SPR-9576

LI ET AL. 3 of 25

Prediction: we use this term to refer to a classification decision, based on machine learning methods, on whether a given commit will eventually

be revealed as influential or not. The objective of a prediction is to ‘‘know’’ now whether a given change will become apparent later based on

observations of previous changes.

1.4 This study

To automatically figure out whether an incoming software change will be influential, we designed a classification technique based on machine

learning. Since the technique requires labeled training instances, we first discovered existing influential changes in several open source projects

in order to obtain baseline data. Specifically, we collected 48 272 code commits from 10 open source projects and did post-mortem analysis to

identify influential changes. This analysis examined several aspects of influential changes such as controversial changes and breaking behaviors.

In addition, we manually analyzed whether those changes actually have a long-term influence on revision histories. As a result, we could discover

several influential changes from each subject. Note that change properties that present obvious patterns for recognizing a change as influential

with high probabilities are post-mortem properties: the influence of the commit has been established at this point (eg, impact on user adoption is

now visible). We further label these changes to build a category definition for influential software changes through an open-card sorting process.

These categories are then validated by developers with experience in code review.

On the basis of the influential changes we discovered in the above study, we extracted feature vectors for machine-learning classification.

These features include program structural metrics,10 terms in change logs,10 and co-change metrics.11 Then, we built a classification model by

leveraging machine learning algorithms such as Naïve Bayes12,13 and Random Forest.14 The prediction/classification is about determining when a

change is being committed, whether it could be influential (later). We leverage machine learning to build a model based on features available at

the time of prediction/classification, but that would not be used to measure ‘‘influence’’ per se. To evaluate the effectiveness of this technique,

we conducted experiments that applied the technique to 10 projects. Experimental assessment results, with a representative randomly sampled

a subset of our data, show that our classification model achieves good performance. Given a change being applied, our classifier is able to classify

it as ‘‘influential’’ with a precision of 86.8%. The classifier is further able to identify 74% (recall) of the influential changes in the dataset. The

overall F-measure of the classifier is thus 80.4%.

This paper makes the following contributions:

• Collection of influential software changes in popular open source projects.

• Definition of influential software change categories approved by the software development community.

• Correlation analysis of several program metrics and influential software changes.

• Accurate machine-learning classification model for influential software changes.

The remainder of this paper is organized as follows. After describing motivating examples in Section 2, we present our study results of

post-mortem analysis for discovering influential changes in Section 3. Section 4 provides our design of a classification model for influential

changes together with a list of features extracted from software changes. In addition, the section reports the evaluation result of experiments in

which we applied the classification model to open source projects. Section 5 discusses the limitations of our work as well as threats to validity.

After surveying the related work in Section 6, we conclude with directions for future research in Section 7.

2 MOTIVATING EXAMPLES

Among code changes committed by developers, a specific subset of them may have an extensive impact on the software project. These changes

are influential not only to internal modules but also other external projects. The influence temporally varies from an immediate impact to a

long-term effect. However, those changes are often recognized in hindsight.

To motivate our study, we consider influential change examples identified from the Linux kernel project.

Linux is an appropriate subject as several changes in the kernel have been influential. These changes are already highlighted in the literature15,16

as their long-term impact started to be noticed. In this section, we present four different examples of influential changes in the Linux kernel and

their impact.

2.1 Collateral evolution

In the Linux kernel, since driver code—which makes up over 70% of the source code—is heavily dependent on the rest of the OS, any change in

the interfaces exported by the kernel and driver support libraries can trigger a large number of adjustments in the dependent drivers.17

Such adjustments, known as collateral evolution, can unfortunately be challenging to implement correctly. Starting with Linux 2.5.4, the USB

library function usb_submit_urb (which implements message passing) takes a second argument for explicitly specifying the context (which was

previously inferred in the function definition). The argument can take one of three values: GFP_KERNEL (no constraints), GFP_ATOMIC (blocking

is not allowed), or GFP_NOIO (blocking is allowed but not I/O). Developers using this USB library must then check their own code to understand

which context it should be as in the example of Figure 1.

4 of 25 LI ET AL.

FIGURE 1 Code patch for adaption to the new
definition of usb_submit_urb. In this case, when
the API function is called, locks are held so the
programmer must use GFP_ATOMIC to avoid
blocking. Its influence was propagated to most
drivers using this library and mostly resulted in
defects

FIGURE 2 Evolution of faults in Linux 2.6 kernel
versions for Lock, LockIntr, Float, and Size fault
categories (see Palix et al15). Faults relevant to
Lock suddenly increased after Version 2.6.16
while other types of faults gradually decreased.
In the version, a feature for Lock was replaced
and it was influential to many of kernel functions

This leads to bugs that keep occurring. A study by Pallix et al15 has reported that because of the complexity of the conditions governing the

choice of the new argument for usb_submit_urb, 71 of the 158 calls to this function were initially transformed incorrectly to use GFP_KERNEL

instead of GFP_ATOMIC.

This change is interesting and constantly influential to a large portion of the kernel, as its real impact could only be predicted if the analysis

took into account the semantics of the change. However, the extent of influences made by the change is difficult to detect immediately after the

commit time since existing techniques2-5 focus only on the short-term impact.

2.2 Feature replacement

In general, the number of entries in each fault category (eg, NULL or Lock) decreases over time in the Linux code base.15 In Linux 2.6 however, as

illustrated in Figure 2, there are some versions in which we can see a sudden rise in the number of faults. This was the case of faults in the Lock‡

category in Linux 2.6.16 because of a replacement of functionality implementation. In Linux 2.6.16, the functions mutex_lock and mutex_unlock

were introduced to replace mutex-like occurrences of the semaphore functions down and up. The study of Palix et al again revealed that nine of

the 11 Lock faults introduced in Linux 2.6.16 and 23 of the 25 Lock faults introduced in Linux 2.6.17 were in the use of mutex_lock.

If the replacement is identified earlier as an influential change to the most of kernel components (and other applications), it may prevent the

defects from recurring everywhere since the change is likely to be an API change.19,20 The developer who committed the new feature did not

realize the influence and thus, there was no early heads-up for other developers.

2.3 Revolutionary feature

An obvious influential change may consist in providing an implementation of a completely new feature, eg, in the form of an API function. In the

Linux kernel repository, Git commit 9ac7849e introduced device resource management API for device drivers. Known as the devm functions,

the API provides memory management primitives for replacing kzalloc functions. This code change is a typical example of influential change with

a long-term impact. As depicted in Figure 3, this change has first gone unnoticed before more and more people started using devm instead of

kzalloc. Had the developers recognized this change as highly influential, they could have examine the potential effectiveness of devm earlier.

2.4 Fixes of controversial/popular issues

Some issues in software projects can be intensively discussed or commented longer than others. Code changes that fix them will be influential

for the project. The characteristics of a controversial/popular issue are that its resolution is of interest for a large number of developers, and it

takes more time to resolve them than the average time-to-fix delay. Thus, we consider that an issue report which is commented on average more

than other issues and is fixed very long after it is opened, is about a controversial/popular issue. In Linux, Git commit bfd36103 resolved Bug

#16691 which remained unresolved in the bug tracking system for 9 months and was commented about 150 times.

‡ To avoid Lock/LockIntr faults, release acquired locks, restore disable interrupts, and do not double acquire locks.15,18

LI ET AL. 5 of 25

FIGURE 3 Usage of memory allocation primitives
in Linux kernel (See Lawall21). kzalloc is the
traditional API for memory allocation, before
managed memory (devm) was introduced in Linux

TABLE 1 Observational study subjects. Data reflect the state of repositories as of 26 January 2015

Project Name Description # Files # Commits # Developers # Issues # Resolved Issues

Commons-codec General encoding/decoding algorithms 635 1,424 24 195 177

Commons-collections Extension of the Java Collections Framework 2983 2722 47 542 512

Commons-compress Library for working with file compression 619 1716 24 308 272

Commons-csv Extension of the Java Collections Framework 141 956 18 147 119

Commons-io Collection of utilities for CSV file reading/writing 631 1718 33 454 365

Commons-lang Extra-functionality for java.lang 1294 4103 46 1073 933

Commons-math Mathematics and statistics components 4582 5496 37 1194 1085

Spring-framework Application framework for the Java platform 19 721 9748 153 3500 2632

Storm Distributed real-time computation system 2038 3534 189 637 321

Wildfly aka JBoss Application Server 31 699 16 855 307 3710 2993

Total 64 388 48 272 878 11 760 9409

3 POST-MORTEM ANALYSIS FOR ICs

In this study, we focus on systematically discovering influential changes. Although the motivating examples described in Section 2 show some

intuitions on influential changes, it is necessary to reveal a larger view to figure out the characteristics of these changes. Therefore, we collected

48 272 changes from 10 popular open-source projects and conducted an observational study.

Since there are too many changes in software repositories and it is not possible for us to inspect all, we get a set of changes that are likely to have

a higher density of influential changes. We are able to get this set by leveraging several intuitions obtained from examples described in Section 2.

The study design basically addressed three different criteria to discover influential changes: (a) popular changes in the sense that they have

been somehow noticed by other developers and users, (b) anomalies in change behaviors, and (c) changes that are related to controversial/popular

issues. These criteria are designed to conduct post-mortem analysis and represent how people can recognize influential changes in hindsight.

For changes in these categories, we manually examine them using the following procedure:

• First of all, the authors of this article ask themselves individually whether a change is really influential. They manually verify that the

assumptions behind the specific criteria used to identify a change are supported.

• Then we cross-check the answers to reach a consensus among the authors.

• Afterwards, we double check that these changes are really influential in the eyes of developers by doing card sorting and surveying

professional developers.

3.1 Data collection

The experiment subjects in this study are shown in Table 1. The 10 popular projects were considered since they have a sufficient number of

changes in their revision histories. In addition, these projects stably maintained their issue tracking systems so that we could keep track of how

developers discussed to make software changes.

For each subject, we collected all available change data (patches and relevant files information) as well as commit metadata (change date and

author details) from the source code repository. Additionally, issue reports from the corresponding issue tracking system were collected together.

We further mined issue linking information from commit messages and issue reports wherever possible: eg, many commit messages explicitly

refer to the unique ID of the issue they are addressing, whether a bug or a feature request.

6 of 25 LI ET AL.

TABLE 2 Statistics of identified influential changes related
to controversial/popular issues

Changes Linked to # Influential

Project Name Controversial/Popular Issues Changes

Commons-codec 26 3

Commons-collections 12 8

Commons-compress 7 4

Commons-csv 5 5

Commons-io 10 0

Commons-lang 29 15

Commons-math 38 8

Spring-framework 53 42

Storm 40 3

Wildfly 20 18

Total 240 106

Raw and processed data collected in this work are made available in the following project page: https://github.com/serval-snt-uni-lu/

influential-changes

3.2 Systematic analysis

To systematically discover potential influential changes among the changes collected from the subject projects, we propose to build on common

intuitions about how a single change can be influential in the development of a software project.

3.2.1 Changes that address controversial/popular issues

In software projects, developers use issue tracking systems to track and fix bugs and for planning future improvements. When an issue is reported,

developers and/or users may provide insights into how the issue can be investigated. Attempts to resolve the issue are also often recorded in the

issue tracking system.

Since an issue tracking system appears as an important place to discuss software quality, we believe it is natural to assume that heated

discussions about a certain issue may suggest the importance of this specific issue. Furthermore, when an issue is finally resolved after an

exceptionally lengthy discussion, all early fix attempts and the final commit that resolves the issue should be considered to be influential. Indeed,

all these software changes have contributed to close the discussion, unlock whatever has been blocking attention from other issues, and satisfy

the majority of stakeholders.

To identify controversial/popular issues in projects, we first searched for issues with an overwhelmingly larger number of comments than

others within the same project. In this study, we regarded an issue as a controversial/popular issue if the number of its comments is larger than

the 99th percentile of issue comment numbers. Applying this simple criterion, we could identify a set of issues that are controversial/popular.

Afterwards, we collected all commits that were associated with each of the controversial/popular issues and tagged them as potentially influential.

An example was found in Apache Math. An issue§ with 62 comments was detected by this analysis. This issue is about a simple glitch of an

API method; the API hangs 4 to 5 seconds at the first call on a specific Android device. The corresponding changes¶ fixed the glitch and closed

the issue.

To confirm that a change related to an identified controversial/popular issue (based on the number of comments) is truly influential, we verify

that (a) the discussion indeed was about the controversy and (b) the change is a key turning point in the discussion. Table 2 compiles the statistics

of changes linked to inferred controversial/popular issues as well as the number of influential changes manually confirmed among those changes.

3.2.2 Anomalies in change behaviors

During software development, source code modifications are generally made in a consecutive way following a somehow regular rhythm. Break in

change behaviors may thus signify abnormality and suggest that a specific commit is relatively more important than others. For instance, consider

the following scenario: a certain file within a repository after a period of regular edits remains unchanged for a period of time, then is suddenly

updated by a single change commit, and afterwards remains again unchanged for a long time. Such a sudden and abnormal change suggests an

urgency to address an issue, eg, a major bug fix. In our observational study, we consider both break in behaviors in the edit rhythm of each file

and the edit rhythm of developers. An anomaly in change behavior may be an out-of-norm change that developers do not notice, or a change to

stable behavior that many developer/parts of code rely on.

In this study, for each file in the project, we considered all commits that modify the file. For each file of those commits, we computed the time

differences from the previous commit and to the next commit. Then, we mapped these two time lags to a two dimensional space and used elliptic

envelope outlier detection22 to identify ‘‘isolated commits.’’ The straightforward approach to outlier detection consists of setting a threshold

§Bug report https://issues.apache.org/jira/browse/MATH- 650
¶ Commits 52649fda4c9643afcc4f8cbf9f8527893fd129ba and 0e9a5f40f4602946a2d5b0efdc75817854486cd7

https://github.com/serval-snt-uni-lu/influential-changes
https://github.com/serval-snt-uni-lu/influential-changes
https://issues.apache.org/jira/browse/MATH-650

LI ET AL. 7 of 25

FIGURE 4 Outlier detection to discover isolated
commits for build.gradle file in Spring
framework

Project Name # Isolated Commits # Influential Changes

Commons-codec 7 3

Commons-collections 28 9

Commons-compress 17 5

Commons-csv 13 4

Commons-io 18 5

Commons-lang 22 7

Commons-math 29 5

Spring-framework 56 8

Storm 48 7

Wildfly 213 1

Total 451 54

TABLE 3 Statistics of identified isolated commits and
the associated manually confirmed influential changes

value based on the standard deviations to the mean measurements on the data. Such an approach has theoretical (see Leys et al23) as well as

practical (eg, training required to identify a good threshold value) limitations. We use in this work the elliptic envelope detection approach, which

first assumes that the data comes from a known distribution and computes the shape of the data as an ellipse around the central data which

are identified based on the covariance estimate to the data. Classical Mahalanobis distances among data points in the ellipse (ie, inliers) are then

used to derive a metric for deciding which data point is an outlier. Concretely, we have used the implementation provided in the scikit-learn#

python programming library. In Figure 4, we can visualize the outliers discovered for the changes on the build.gradle file from the Spring project

subject. The highlighted outlier represents a commit‖ for including AspectJ files in the Spring-sources jar file. This small commit is influential as

it fixes a bug that affects the downloadable release packages used by developers leveraging the Spring framework. Its detail is explained in the

corresponding bug report.**

Individual project contributors also often exhibit abnormal behaviors which may suggest influential code changes. For instance, one core

developer constantly contributes to a specific project. If such a developer submits isolated commits (ie, commits that are a long time away from the

author's previous commit as well as his/her next commit), this might be recognized as an emergency case where immediate attention is needed.

In this study, we also systematically classified isolated commits based on developer behaviors as potentially influential. For example, from

commits by developer Stefan Bodewig in Commons-COMPRESS, we found an isolated commit†† where he proposed a major bug fix for the

implementation of the ZipArchiveEntry API. Before this influential software change, any attempt to create a zip file with a large number of entries

was producing a corrupted file.

To confirm that an isolated change is influential, we verify that (a) its importance is clearly stated in the change log and (b) the implication of

the change for dependent modules and client applications are apparent. Table 3 provides the statistics on detected isolated commits and the

results of our manual analysis on those commits to confirm influential changes.

http://scikit- learn.org/stable/modules/outlier_detection.html\backslash#id1
‖Commit a681e574c3f732d3ac945a1dda4a640ce5514742
** Bug report https://jira.spring.io/browse/SPR- 9576
††Commit fadbb4cc0e9ca11c371c87ce042fd596b13eb092

http://scikit-learn.org/stable/modules/outlier_detection.html$�ackslash $#id1
https://jira.spring.io/browse/SPR-9576

8 of 25 LI ET AL.

TABLE 4 Statistics of identified referenced commits and
influential commits

Project Name # Referenced Commits # Influential Changes

Commons-codec 8 3

Commons-collections 3 1

Commons-compress 3 0

Commons-csv 3 2

Commons-io 5 1

Commons-lang 21 2

Commons-math 43 3

Spring-framework 1 1

Storm 1 0

Wildfly 11 9

Total 99 22

TABLE 5 Overall manual assessment results. We compared the percentage of changes that were manually confirmed to be influential from
the datasets yielded by our systematic analysis (see Section 3.2) and a random selection in projects. Note that we count unique commits in
this table since some commits can be detected by more than one method described in Section 3.2

Project Name Systematic Analysis Findings Random Selection

Total Influential Rate Total Influential Rate

Commons-codec 40 8 20.0% 20 0 0.0%

Commons-collections 42 17 40.5% 20 0 0.0%

Commons-compress 27 9 33.3% 20 1 5.0%

Commons-csv 21 11 52.4% 20 1 5.0%

Commons-io 33 6 18.2% 20 0 0.0%

Commons-lang 72 24 33.3% 20 0 0.0%

Commons-math 108 14 13.0% 20 0 0.0%

Spring-framework 110 51 46.4% 20 1 5.0%

Storm 89 10 11.2% 20 1 5.0%

Wildfly 243 27 11.1% 20 1 5.0%

Total 785 177 22.5% 200 5 2.5%

3.2.3 Changes referred to in other changes

We considered that popular changes are potentially influential. These are changes that other developers have somehow noticed (eg, incomplete

fix, API change that causes collateral evolution). Indeed, when developers submit software changes to a project, they usually submit also a commit

message introducing what their patch does. Occasionally, developers refer to others' contributions in these messages. This kind of behaviors

suggests that the referred contribution is influential, at least to a certain extent. For example, in the Commons-CSV project, commit‡‡ 93089b26

is referred by another commit.§§ This commit implemented the capability to detect the start of a line, which is undoubtedly an influential change

for the implementation of CSV format reading.

Because some of the projects have switched from using Subversion to using Git, we first managed to create a mapping between the Subversion

revision numbers (which remain as such in the commit messages) and the newly attributed Git Hash code. To confirm that a change referenced by

other changes is influential, we verify that (a) it is indeed referenced by others because it was inducing their changes and (b) the implication of the

change for dependent modules and client applications are apparent. Table 4 provides the statistics of influential changes derived with this metric.

3.3 Manual validation on a sample set

We then set to manually validate the suitability of the metrics used in our observational study. To that end, we must compute the rate of

influential changes among the changes that exhibit high scores in the metrics defined about, as well as the rate of influential changes among a

randomly selected set of changes within a project history. Concretely, we manually verify whether the potential influential changes yielded by

the systematic analysis are indeed acceptable as influential (240, 451, and 99 commits shown in Tables 2, 3, and 4, respectively—ie, 785 distinct

commits as shown in Table 5). We further randomly pick change commits from each project and manually check the percentage of changes that

can be accepted as influential as well. The comparison between the two types of datasets aimed at validating our choices of postmortem metrics

to easily collect influential changes. Table 5 provides the results of the qualitative assessment. For each project, the random dataset size is fixed

to 20 commits¶¶ , leading to a manual checking of 200 changes. Our systematic analysis findings produce change datasets with the highest rates

of ‘‘truly’’ influential changes (an order of magnitude more than what can be identified in random samples).

‡‡Commit 93089b260cd2030d69b3f7113ed643b9af1adcaa
§§Commit 05b5c8ef488d5d230d665b9d488ca572bec5dc0c
¶¶ We selected this number to align with the smallest number of commits found using the systematic analysis technique on a project

LI ET AL. 9 of 25

The validation procedure, for a commit to be accepted as influential, was implemented to follow a simple but rigorous procedure. Given a

commit, we first read the commit log to understand ‘‘what’’ the change is about. At this point, we look for hints that the change is influential (eg,

the commit author can suggest it when he enumerates the important issue that the change addresses). Second, we look at the component that

the commit touches as well as the amount of changes that are made in the commit (eg, an entire repackaging of a codec code with a new build

configuration may be too invasive and requests several changes later, including a potential reverting). Finally, we consider the commit number

as well as key terms that we identify in the commit log, and grep other subsequent commits to check whether other commits were necessary

follow-up of the commit under study, and thus to measure its ‘‘influence’’ on the development.

Conclusion: The difference in influential rate values with random shows that our postmortem metrics (isolated changes, popular commits, changes

unlocking issues) are indeed good indicators for collecting some influential software changes.

3.4 Developer validation

To further validate the influential software changes dataset that we have collected with our intuition-based postmortem metrics, we perform a

large-scale developer study. Instead of asking developers to confirm each identified commit, we must summarize the commits into categories.

To that end, we leverage the open-card sorting,24 a well-known, reliable, and user-centered method for building a taxonomy of a system.25 Card

sorting helps explore patterns on how users would expect to find content or functionality. In our case, we use this technique to label influential

software changes within categories that are easily differentiable for developers.

We consider open-card sorting where participants are given cards showing the description of identified influential software changes## without

any pre-established groupings. They are then asked to sort cards into groups that they feel are acceptable and then describe each group. We

performed this experiment in several iterations:

• first, two authors of this paper provided individually their group descriptions based on the 177 influential changes identified from the

postmortem analysis.

• Second, the two authors then met to perform another open-card sorting with cards containing their agreed group descriptions. Table 6

enumerates the 28 cards that were then summarized.

• Finally, a third author, with more experience in open-card sorting joined for a final group open-card sorting process which yielded 12

categories of influential software changes reported in Table 7.

The influential software changes described in the 12 categories span over four software maintenance categories initially defined by Lientz

et al26 and updated in ISO/IEC 14764:

• Most influential software changes belong to the corrective changes category.

• Others are either preventive changes, adaptive changes, or perfective changes.

• Finally, changes in one of our influential change categories can fall into more than one maintenance categories. We refer to them as cross

area changes.

Developer assessment. We then conduct a developer survey to assess the relevance of the 12 categories of influential changes that we

described. The survey participants have been selected from data collected in the GHTorrent project27 which contains history archives on user

activities and repository changes in GitHub. We consider active developers (ie, those who have contributed to the latest changes recorded in

GHTorrent) and focus on those who have submitted comments on other's commit. We consider this to be an indication of experience with code

review. The study‖‖ was sent to over 1952 developer email addresses. After one week waiting period, only 800 email owners opened the mail

and 144 of them visited the survey link. Finally, 89 developers volunteered to participate in the survey. Of these developers, 66 (ie, 74%) hold

a position in a software company or work in freelance. Nine respondents (10%) are undergraduate students and eight (9%) are researchers. The

remaining six developers did not indicate their current situation. In total, 78% of the participants confirmed having been involved in code review

activities; 26 (29%) developers have between one and five years of experience in software development; 29 (33%) developers have between five

and 10 years of experience. The remaining 34 (38%) have over 10 years of experience.

In the survey questionnaire, developers were provided with the name of a category of influential software changes, its description, and an

illustrative example from our dataset (we provided the same example for each category to every participant). The participant was then requested

to assess the relevance of this category of changes as influential software changes using a Likert scale between 1 (very influential) and 5

(unimportant). Figure 5 summarizes the survey results. For a more detailed description of the categories, we refer the reader to the project web

site (see Section ‘‘Availability’’).

##We consider all 177 influential software changes from the postmortem analysis.
‖‖Survey form at https://goo.gl/V2g8OE

https://goo.gl/V2g8OE

10 of 25 LI ET AL.

TA
B

LE
6

C
ar

d
s

af
te

r
th

e
se

co
n

d
-r

o
u

n
d

o
f

o
p

en
-c

ar
d

so
rt

in
g

C
ar

d
d

es
cr

ip
ti

o
n

E
xa

m
p

le
C

o
m

m
it

D
es

cr
ip

ti
o

n
(O

n
ly

W
h

en
n

o
t

Su
m

m
ar

y
N

ee
d

s
E

xp
la

n
at

io
n

)

Im
p

le
m

en
ta

ti
o

n
o

f
a

lo
n

g-
aw

ai
te

d
fe

at
u

re

C
h

an
ge

w
h

ic
h

w
as

d
is

cu
ss

ed
at

le
n

gt
h

as
so

lv
in

g
a

b
u

g
th

at
w

as
ve

ry
h

ar
d

to
re

p
ro

d
u

ce

tr
iv

ia
lf

ix
es

th
at

h
as

h
ig

h
im

p
ac

t
o

n
b

as
ic

re
q

u
ir

em
en

ts
fo

r
sy

st
em

fu
n

ct
io

n
al

it
y

(e
g,

in
co

m
m

o
n

s-
co

m
p

re
ss

,s
im

p
le

fi
xe

s
b

u
t

it
ca

n
p

re
ve

n
t

fi
le

p
at

h
en

co
d

in
g

p
ro

b
le

m
s)

B
u

g
fi

x
o

f
a

ke
y

fe
at

u
re

in
lib

ra
ry

B
u

g
fi

x
o

f
a

b
u

g
th

at
m

an
if

es
ts

it
se

lf
o

n
ly

in
co

rn
er

-c
as

es
(e

g,
T

h
is

fi
x

p
re

ve
n

ts
d

at
a

in
te

gr
it

y
vi

o
la

ti
o

n
s,

w
h

ic
h

ca
n

n
o

t
b

e
re

ve
al

ed
u

n
le

ss
ac

ce
ss

in
g

m
is

si
n

g
d

at
a.

)

B
u

g
fi

x
to

p
re

ve
n

t
an

in
fi

n
it

e
lo

o
p

w
h

en
A

P
Ir

ea
d

in
g

in
p

u
t

st
re

am
en

co
u

n
te

rs
an

u
n

m
ap

p
ab

le
ch

ar
ac

te
r

R
ep

la
ce

m
en

t
o

f
ke

y
fu

n
ct

io
n

al
it

y
co

d
e

to
im

p
ro

ve
u

sa
b

ili
ty

F
ix

fo
r

a
re

gr
es

si
o

n
er

ro
r

th
at

is
h

ar
d

to
re

p
ro

d
u

ce
an

d
th

at
(e

g,
th

e
ch

an
ge

is
ab

o
u

t
ex

ce
p

ti
o

n
h

an
d

lin
g

(w
h

et
h

er
it

sh
o

u
ld

b
e

ca
u

gh
t

in
th

e
p

ro
gr

am
an

d
w

h
ic

h
p

la
ce

).

o
cc

u
rs

in
sp

ec
if

ic
,b

u
t

p
o

p
u

la
r,

en
vi

ro
n

m
en

t
T

h
is

is
n

o
t

ea
sy

to
re

p
ro

d
u

ce
.I

t
h

ap
p

en
s

in
G

o
o

gl
e

A
p

p
E

n
gi

n
e

an
d

th
e

p
re

vi
o

u
s

ve
rs

io
n

w
o

rk
s

co
rr

ec
tl

y.
)

F
ix

fo
r

an
A

P
Ib

u
g—

th
e

A
P

Ii
s

u
se

d
p

er
va

si
ve

ly

N
ew

fe
at

u
re

th
at

w
as

d
is

cu
ss

ed
at

le
n

gt
h

N
ew

fe
at

u
re

th
at

im
p

le
m

en
ts

as
an

A
P

Ia
fu

n
ct

io
n

al
it

y
th

at
d

ev
el

o
p

er
s

im
p

le
m

en
t

re
gu

la
rl

y
in

an
ad

h
o

c
m

an
n

er
in

th
ei

r
o

w
n

co
d

e

N
o

n
-f

u
n

ct
io

n
al

b
u

g
fi

x
fo

r
sp

ec
iif

ic
p

o
p

u
la

r
A

P
I—

le
ad

s
to

d
eb

at
e

(e
g,

T
h

is
ch

an
ge

fi
xe

s
a

p
er

fo
rm

an
ce

b
u

g
w

h
ic

h
af

fe
ct

s
A

n
d

ro
id

ap
p

lic
at

io
n

s.
T

h
is

ch
an

ge
le

ad
s

to
a

lo
n

g
d

eb
at

e
si

n
ce

p
eo

p
le

h
av

e
d

if
fe

re
n

t
o

p
in

io
n

s
o

n
th

is
is

su
e.

T
h

e
re

p
ai

re
d

m
et

h
o

d
is

p
o

p
u

la
r.

)

C
h

an
ge

re
ve

rt
in

g
a

b
u

g
fi

x
to

a
ke

y
fu

n
ct

io
n

al
it

y

C
o

n
tr

o
ve

rs
ia

lc
h

an
ge

th
at

is
d

eb
at

ed
an

d
th

en
re

ve
rt

ed

F
ix

fo
r

a
b

u
g

th
at

af
fe

ct
s

m
an

y
cl

ie
n

ts
/c

o
m

p
o

n
en

ts
/a

p
p

lic
at

io
n

s
(ie

,c
o

re
co

m
p

o
n

en
t)

F
ix

to
a

b
lo

ck
in

g
b

u
g

F
ix

fo
r

n
o

n
-f

u
n

ct
io

n
al

d
ef

ec
t

(e
g,

P
er

fo
rm

an
ce

d
ef

ec
t—

ad
d

in
g

m
u

lt
ic

o
re

s
co

u
ld

n
o

t
im

p
ro

ve
th

e
p

er
fo

rm
an

ce
.)

N
ew

A
P

Ii
m

p
le

m
en

ta
ti

o
n

fo
r

fu
tu

re
ap

p
lic

at
io

n
s

F
ix

o
f

d
ep

en
d

en
cy

p
ro

b
le

m
s

fo
r

co
m

p
ila

ti
o

n

F
ix

o
f

co
n

fi
gu

ra
ti

o
n

er
ro

rs
(e

g,
N

ew
b

u
ild

re
fe

re
n

ce
s

in
P

O
M

fi
le

s
an

d
as

se
m

b
ly

re
fe

re
n

ce
s)

F
ix

o
f

a
tr

iv
ia

lb
u

g,
b

u
t

w
h

ic
h

ap
p

ea
rs

in
se

ve
ra

ld
if

fe
re

n
t

co
m

p
o

n
en

ts
h

tt
p

s:
//

gi
th

u
b

.c
o

m
/w

ild
fl

y/
w

ild
fl

y/
co

m
m

it
/e

ea
5

d
5

fe
3

4
e9

e7
c6

7
f0

7
6

ca
e8

1
fe

c6
eb

f0
6

6
2

6
af

–
le

ad
s

to
d

eb
at

e
an

d
ve

ri
fi

ca
ti

o
n

o
f

al
ls

o
u

rc
e

co
d

e

F
ix

a
b

u
g

th
at

is
n

o
t

ea
sy

to
lo

ca
te

(e
g,

Y
es

,t
h

is
ch

an
ge

re
le

as
es

th
e

h
an

g
(n

o
t

fa
ili

n
g

n
o

r
cr

as
h

in
g)

o
f

a
te

st
ca

se
.A

te
st

ca
se

h
an

g
ca

n
b

lo
ck

m
av

en
b

u
ild

in
g.

C
h

an
ge

th
at

o
ve

rh
au

ls
an

im
p

o
rt

an
t

m
o

d
u

le
/f

ile

C
h

an
ge

th
at

ad
d

te
st

ca
se

s
to

av
o

id
sp

ec
if

ic
im

p
o

rt
an

t
fu

n
ct

io
n

al
b

u
gs

C
h

an
ge

fo
r

im
p

ro
ve

m
en

t
o

f
im

p
le

m
en

ta
ti

o
n

b
y

cr
ea

ti
o

n
o

f
n

ew
ex

ce
p

ti
o

n
cl

as
s

C
h

an
ge

in
n

ig
h

tl
y

p
ro

ce
ss

m
an

ag
em

en
t

B
u

g
fi

x
th

at
fi

n
al

iz
es

/c
o

rr
ec

ts
p

re
vi

o
u

s
fi

x
in

A
P

I

C
h

an
ge

s
th

at
le

ad
to

se
ve

ra
lc

o
lla

te
ra

lc
h

an
ge

s
(in

cl
u

d
in

g
re

ve
rt

in
g,

n
ew

A
P

Im
ap

p
in

g)

LI ET AL. 11 of 25

TA
B

LE
7

Li
st

o
f

1
2

in
fl

u
en

ti
al

ch
an

ge
s

la
b

el
ed

d
u

ri
n

g
o

p
en

ca
rd

so
rt

in
g,

w
it

h
ex

am
p

le
s

o
f

ch
an

ge
s

C
at

.
C

o
n

se
n

su
s-

B
as

ed
La

b
el

D
es

cr
ip

ti
o

n
o

f
In

fl
u

en
ce

E
xa

m
p

le
C

h
an

ge

A
d

ap
ti

ve
/p

er
fe

ct
iv

e
ch

an
ge

s
N

ew
ke

y
fe

at
u

re
Im

p
le

m
en

ta
ti

o
n

o
f

a
lo

n
g

aw
ai

te
d

Im
p

le
m

en
ta

ti
o

n
o

f
th

e
K

al
m

an
fi

lt
er

in
th

e
C

o
m

m
o

n
s-

M
A

T
H

p
ro

je
ct

w
as

ta
gg

ed
in

fe
at

u
re

,c
h

an
ge

th
at

im
p

le
m

en
ts

as
h

tt
p

s:
//

is
su

es
.a

p
ac

h
e.

o
rg

/j
ir

a/
b

ro
w

se
/M

A
T

H
-4

8
5

as
a

m
aj

o
r

fe
at

u
re

re
q

u
es

t,
w

h
ic

h

an
A

P
I,

a
fu

n
ct

io
n

al
it

y
th

at
d

ev
el

o
p

er
s

w
as

re
so

lv
ed

b
y

th
e

ch
an

ge
co

m
m

it

im
p

le
m

en
t

re
gu

la
rl

y
in

an
ad

h
o

c
h

tt
p

s:
//

gi
th

u
b

.c
o

m
/a

p
ac

h
e/

co
m

m
o

n
s-

m
at

h
/c

o
m

m
it

/5
8

d
1

8
8

5
2

m
an

n
er

in
th

ei
r

o
w

n
co

d
e

C
ro

ss
-a

re
a

ch
an

ge
s

D
o

m
in

o
ch

an
ge

s
C

h
an

ge
ca

u
si

n
g

m
an

y
co

lla
te

ra
lc

h
an

ge
s

St
ar

ti
n

g
w

it
h

Li
n

u
x

2
.5

.4
,t

h
e

U
SB

lib
ra

ry
fu

n
ct

io
n

u
sb

_s
u

b
m

it
_u

rb
(w

h
ic

h
im

p
le

m
en

ts

(e
g,

A
P

Im
o

d
if

ic
at

io
n

le
ad

in
g

to
ch

an
ge

s
m

es
sa

ge
p

as
si

n
g)

n
o

w
ta

ke
s

a
se

co
n

d
ar

gu
m

en
t

fo
r

ex
p

lic
it

ly
sp

ec
if

yi
n

g
th

e
co

n
te

xt

o
f

al
lA

P
Im

et
h

o
d

ca
ll

si
te

s)
(w

h
ic

h
w

as
p

re
vi

o
u

sl
y

in
fe

rr
ed

in
th

e
fu

n
ct

io
n

d
ef

in
it

io
n

).
T

h
e

ar
gu

m
en

t
ca

n
ta

ke
o

n
e

o
f

th
re

e
va

lu
es

:G
F

P
_K

E
R

N
E

L
(n

o
co

n
st

ra
in

ts
),

G
F

P
_A

T
O

M
IC

o
r

G
F

P
_N

O
IO

(b
lo

ck
in

g

is
al

lo
w

ed
b

u
t

n
o

t
I/

O
).

D
ev

el
o

p
er

s
u

si
n

g
th

is
U

SB
lib

ra
ry

m
u

st
th

en
p

ar
se

th
ei

r
o

w
n

co
d

e
to

u
n

d
er

st
an

d
w

h
ic

h
co

n
te

xt
it

sh
o

u
ld

b
e.

T
h

is
le

ad
s

to
b

u
gs

th
at

ca
n

ke
ep

o
cc

u
rr

in
g.

A
st

u
d

y
o

f
fa

u
lt

s
in

Li
n

u
x

b
y

P
al

lix
et

al
1

5
h

av
e

re
p

o
rt

ed
th

at
b

ec
au

se

o
f

th
e

co
m

p
le

xi
ty

o
f

th
e

co
n

d
it

io
n

s
go

ve
rn

in
g

th
e

ch
o

ic
e

o
f

th
e

n
ew

ar
gu

m
en

t
fo

r

u
sb

su
b

m
it

u
rb

,7
1

o
f

th
e

1
5

8
ca

lls
to

th
is

fu
n

ct
io

n
w

er
e

in
it

ia
lly

tr
an

sf
o

rm
ed

in
co

rr
ec

tl
y

to
u

se
G

F
P

K
E

R
N

E
L

in
st

ea
d

o
f

G
F

P
_A

T
O

M
IC

.

P
re

ve
n

ti
ve

ch
an

ge
s

A
P

Iu
sa

b
ili

ty
im

p
ro

ve
m

en
t

R
ep

la
ce

m
en

t
o

f
ke

y
fu

n
ct

io
n

al
it

y
In

th
e

W
ild

fl
y

p
ro

je
ct

,a
m

aj
o

r
fe

at
u

re
re

q
u

es
t

(h
tt

p
s:

//
is

su
es

.jb
o

ss
.o

rg
/b

ro
w

se
/W

F
LY

-2
8

0
)

co
d

e
to

im
p

ro
ve

u
sa

b
ili

ty
o

r
w

as
re

so
lv

ed
fo

r
p

ro
vi

d
in

g
an

o
p

er
at

io
n

to
re

tr
ie

ve
th

e
la

st
1

0
er

ro
rs

fr
o

m
th

e
lo

g.

in
tr

o
d

u
ct

io
n

o
f

n
ew

er
ro

r
m

an
ag

em
en

t
D

is
cu

ss
io

n
s

o
n

th
e

is
su

e
p

ag
e

cl
ea

rl
y

sh
o

w
s

th
at

th
e

ch
an

ge
w

as
so

lv
in

g
a

m
aj

o
r

(e
g,

im
p

ro
ve

m
en

t
o

f
im

p
le

m
en

ta
ti

o
n

is
su

e
as

it
im

p
ro

ve
d

u
sa

b
ili

ty
su

b
st

an
ti

al
ly

b
y

cr
ea

ti
o

n
o

f
a

n
ew

ex
ce

p
ti

o
n

(h
tt

p
s:

//
gi

th
u

b
.c

o
m

/w
ild

fl
y/

w
ild

fl
y/

co
m

m
it

/a
2

2
b

8
d

7
cc

f8
7

2
b

5
0

3
d

a8
d

4
3

f1
c2

9
3

9
0

3
5

6
d

6
d

5
d

3
)

cl
as

s
o

r
lo

g
m

an
ag

em
en

t
fo

r
u

se
rs

)

M
aj

o
r

st
ru

ct
u

ra
lc

h
an

ge
C

h
an

ge
th

at
o

ve
rh

au
ls

an
C

o
m

m
it

3
4

6
5

8
f0

8
(h

tt
p

s:
//

gi
th

u
b

.c
o

m
/a

p
ac

h
e/

co
m

m
o

n
s-

la
n

g/
co

m
m

it
/3

4
6

5
8

f0
8

)

im
p

o
rt

an
t

m
o

d
u

le
/f

ile
in

th
e

co
m

m
o

n
s-

LA
N

G
p

ro
je

ct
re

w
ri

te
s

an
en

ti
re

u
ti

ls
fi

le

F
ix

co
n

fi
gu

ra
ti

o
n

b
u

g
F

ix
o

f
d

ep
en

d
en

cy
p

ro
b

le
m

s
fo

r
In

th
e

W
IL

D
F

LY
p

ro
je

ct
a

m
aj

o
r

b
u

g
(h

tt
p

s:
//

is
su

es
.jb

o
ss

.o
rg

/b
ro

w
se

/W
F

LY
-2

0
4

7
)

co
m

p
ila

ti
o

n
,c

h
an

ge
in

n
ig

h
tl

y
b

u
ild

w
as

fi
n

al
ly

re
so

lv
ed

b
y

fi
xi

n
g

d
ep

en
d

en
ci

es
in

th
e

co
n

n
ec

to
r

m
o

d
u

le

p
ro

ce
ss

m
an

ag
em

en
t

(h
tt

p
s:

//
gi

th
u

b
.c

o
m

/w
ild

fl
y/

w
ild

fl
y/

co
m

m
it

/8
8

7
5

6
d

d
b

1
0

6
1

6
6

0
cb

5
ca

6
8

f5
5

6
2

d
7

3
4

3
5

7
0

d
d

9
5

5
)

Im
p

o
rt

an
t

te
st

ca
se

ad
d

it
io

n
C

h
an

ge
s

th
at

ad
d

te
st

ca
se

s
to

C
o

m
m

it
1

f0
0

1
d

0
6

(h
tt

p
s:

//
gi

th
u

b
.c

o
m

/a
p

ac
h

e/
co

m
m

o
n

s-
la

n
g/

co
m

m
it

/1
f0

0
1

d
0

6
)i

n
th

e
LA

N
G

p
ro

je
ct

av
o

id
sp

ec
if

ic
im

p
o

rt
an

t
fu

n
ct

io
n

al
b

u
gs

sp
ec

if
ic

al
ly

ad
d

ed
so

m
e

te
st

ca
se

s
to

av
o

id
re

gr
es

si
o

n
fa

u
lt

s
o

n
ke

y
fu

n
ct

io
n

al
it

ie
s.

F
ix

n
o

n
-f

u
n

ct
io

n
al

b
u

g
N

o
n

-f
u

n
ct

io
n

al
b

u
g

fi
x

fo
r

a
sp

ec
if

ic
A

P
I.

A
ch

an
ge

in
C

o
m

m
o

n
s-

m
at

h
p

ro
je

ct
fi

xe
s

a
p

er
fo

rm
an

ce
b

u
g

w
h

ic
h

af
fe

ct
s

A
n

d
ro

id
ap

p
lic

at
io

n
s

P
er

fo
rm

an
ce

o
r

se
cu

ri
ty

is
su

es
(h

tt
p

s:
//

gi
th

u
b

.c
o

m
/a

p
ac

h
e/

co
m

m
o

n
s-

m
at

h
/c

o
m

m
it

/5
2

6
4

9
fd

a4
c9

6
4

3
af

cc
4

f8
cb

f9
f8

5
2

7
8

9
3

fd
1

2
9

b
a)

.

u
su

al
ly

le
ad

to
d

eb
at

e
am

o
n

g
d

ev
el

o
p

er
s

T
h

is
ch

an
ge

le
ad

s
to

a
lo

n
g

d
eb

at
e

si
n

ce
p

eo
p

le
h

av
e

d
if

fe
re

n
t

o
p

in
io

n
s

o
n

th
is

is
su

e.
A

lt
h

o
u

gh

th
is

d
o

es
n

o
t

af
fe

ct
th

e
fu

n
ct

io
n

al
it

y
o

f
th

e
m

et
h

o
d

,t
h

e
re

p
ai

re
d

m
et

h
o

d
is

p
o

p
u

la
r (C

o
n

ti
n

u
es

)

https://issues.apache.org/jira/browse/MATH-485
https://github.com/apache/commons-math/commit/58d18852
https://issues.jboss.org/browse/WFLY-280
https://github.com/wildfly/wildfly/commit/a22b8d7ccf872b503da8d43f1c29390356d6d5d3
https://github.com/apache/commons-lang/commit/34658f08
https://github.com/wildfly/wildfly/commit/88756ddb1061660cb5ca68f5562d7343570dd955
https://github.com/apache/commons-lang/commit/1f001d06
https://github.com/apache/commons-math/commit/52649fda4c9643afcc4f8cbf9f8527893fd129ba

12 of 25 LI ET AL.

TA
B

LE
7

(C
o

n
ti

n
u

ed
)

C
at

.
C

o
n

se
n

su
s-

B
as

ed
La

b
el

D
es

cr
ip

ti
o

n
o

f
In

fl
u

en
ce

E
xa

m
p

le
C

h
an

ge

C
o

rr
ec

ti
ve

ch
an

ge
s

F
ix

h
ar

d
to

re
p

ro
d

u
ce

/
F

ix
o

f
a

b
u

g
th

at
m

an
if

es
ts

it
se

lf
A

ch
an

ge
in

th
e

Sp
ri

n
g

fr
am

ew
o

rk
fi

xe
s

a
re

gr
es

si
o

n
fa

u
lt

th
at

is
n

o
t

ea
sy

to
re

p
ro

d
u

ce

lo
ca

te
b

u
g

o
n

ly
in

co
rn

er
-c

as
es

,o
r

a
b

u
g

th
at

(c
f.

h
tt

p
s:

//
gi

th
u

b
.c

o
m

/s
p

ri
n

g-
p

ro
je

ct
s/

sp
ri

n
g-

fr
am

ew
o

rk
/c

o
m

m
it

/9
5

6
b

6
6

b
b

d
4

6
6

b
b

7
a6

8
e8

4
9

9
a4

8
3

1
3

9
a5

1
6

5
7

2
b

2
4

).

is
n

o
t

ea
sy

to
lo

ca
te

,o
r

a
b

u
g

th
at

is
si

m
p

ly
h

ar
d

to
re

p
ro

d
u

ce

F
ix

b
lo

ck
in

g
b

u
g

F
ix

a
b

u
g

th
at

p
re

ve
n

ts
o

th
er

b
u

gs
In

p
ro

je
ct

C
A

SS
A

N
D

R
A

,c
o

m
m

it
d

3
7

6
9

6
ca

p
ro

vi
d

es
a

ch
an

ge
th

at
fi

xe
s

p
ar

ti
al

ly
a

m
aj

o
r

b
lo

ck
in

g
b

u
g

fr
o

m
b

ei
n

g
ex

p
o

se
d

/a
d

d
re

ss
ed

F
ix

p
er

va
si

ve
b

u
g

F
ix

o
f

a
b

u
g

th
at

af
fe

ct
s

m
an

y
In

th
e

Sp
ri

n
g

fr
am

ew
o

rk
,a

ch
an

ge
in

th
e

eq
u

al
it

y
o

p
er

at
o

r
is

p
er

va
si

ve
ly

af
fe

ct
in

g
o

th
er

co
m

p
o

n
en

ts

cl
ie

n
ts

/c
o

m
p

o
n

en
ts

/a
p

p
lic

at
io

n
s

(h
tt

p
s:

//
gi

th
u

b
.c

o
m

/s
p

ri
n

g-
p

ro
je

ct
s/

sp
ri

n
g-

fr
am

ew
o

rk
/c

o
m

m
it

/2
a0

5
e6

af
a1

1
6

ab
5

6
3

7
8

5
2

1
b

5
e8

c8
3

4
b

a9
2

c2
5

b
8

5
).

(ie
,c

o
re

co
m

p
o

n
en

t)
,f

ix
a

b
u

g

w
h

ic
h

m
ay

al
so

ap
p

ea
r

in
se

ve
ra

l

d
if

fe
re

n
t

co
m

p
o

n
en

ts
,o

r
fi

x

o
f

an
A

P
It

h
at

is
u

se
d

p
er

va
si

ve
ly

F
ix

ke
y

fe
at

u
re

b
u

g
B

u
g

fi
x

o
f

a
ke

y
fe

at
u

re
in

lib
ra

ry
In

C
o

m
m

o
n

s-
C

O
M

P
R

E
SS

p
ro

je
ct

,a
b

u
g

fi
x

ch
an

ge
(f

ad
b

b
4

cc
)w

as
ap

p
lie

d
to

fi
x

th
e

im
p

le
m

en
ta

ti
o

n
o

f
th

e
zi

p

o
r

fi
x

th
at

h
as

h
ig

h
im

p
ac

t
o

n
b

as
ic

fu
n

ct
io

n
al

it
y.

In
d

ee
d

,c
re

at
in

g
a

zi
p

fi
le

w
it

h
m

an
y

en
tr

ie
s

w
as

p
ro

d
u

ci
n

g
a

w
ro

n
g

ar
ch

iv
e

re
q

u
ir

em
en

ts
fo

r
sy

st
em

fu
n

ct
io

n
al

it
y

C
o

rr
ec

ti
n

g
co

n
tr

o
ve

rs
ia

l
B

u
g

fi
x

th
at

fi
n

al
iz

es
/c

o
rr

ec
ts

p
re

vi
o

u
s

(h
tt

p
s:

//
gi

th
u

b
.c

o
m

/s
p

ri
n

g-
p

ro
je

ct
s/

sp
ri

n
g-

fr
am

ew
o

rk
/c

o
m

m
it

/c
fc

8
2

1
d

1
7

9
9

ca
7

c6
4

b
1

b
b

c5
3

8
1

1
b

7
1

2
fd

aa
4

7
7

6
c

ch
an

ge
ch

an
ge

s
in

th
e

fi
x

in
A

P
I,

ch
an

ge
re

ve
rt

in
g

an
d

h
tt

p
s:

//
gi

th
u

b
.c

o
m

/s
p

ri
n

g-
p

ro
je

ct
s/

sp
ri

n
g-

fr
am

ew
o

rk
/c

o
m

m
it

/0
9

3
4

7
5

1
d

7
aa

6
2

5
fd

0
9

8
0

8
6

ce
3

a5
fb

4
8

9
f2

ed
c7

e0
)

Sp
ri

n
g

F
ra

m
ew

o
rk

a
b

u
g

fi
x

to
a

ke
y

fu
n

ct
io

n
al

it
y

o
r

ar
e

fi
xi

n
g

re
gr

es
si

o
n

fa
u

lt
s

th
at

co
u

ld
n

o
t

b
e

ea
si

ly
re

p
ro

d
u

ce
d

.T
h

es
e

ch
an

ge
s

w
er

e
re

ve
rt

ed
se

ve
ra

lt
im

es
d

u
e

to

co
n

tr
o

ve
rs

ia
lc

h
an

ge
th

at
is

in
co

m
p

le
te

fi
xe

s

d
eb

at
ed

an
d

th
en

re
ve

rt
ed

https://github.com/spring-projects/spring-framework/commit/956b66bbd466bb7a68e8499a483139a516572b24
https://github.com/spring-projects/spring-framework/commit/2a05e6afa116ab56378521b5e8c834ba92c25b85
https://github.com/spring-projects/spring-framework/commit/cfc821d1799ca7c64b1bbc53811b712fdaa4776c
https://github.com/spring-projects/spring-framework/commit/0934751d7aa625fd098086ce3a5fb489f2edc7e0

LI ET AL. 13 of 25

FIGURE 5 Survey results on different categories of Influential Changes

The survey results suggest that:

• According to software developers with code review experience, all 12 categories are about important changes: seven categories have an

average agreement of 2 (ie, Influential), the remaining five categories have an average of 3 (ie, potentially influential). Some (eg, ‘‘domino

changes’’ and ‘‘changes fixing pervasive bugs’’) are clearly found as more influential than others (eg, ‘‘important test case addition’’).

• Some changes, such as ‘‘fixes for hard to reproduce or locate bugs,’’ ‘‘fixes non-functional bugs,’’ ‘‘important test case addition’’, and ‘‘fixes

configuration bugs,’’ are not as influential as one might think.

• Developers also suggested two other categories of influential changes: Documentation changes and Design-phase changes. The latter,

however, is challenging to capture in source code repository artefacts, while the former is not relevant to our study which focuses on

source code changes.

With this study, we can increase our confidence in the dataset of influential software changes that we have collected. The examples listed in

Section 1 can be categorized: ‘‘Adding a new lock mechanism’’ to ‘‘new key features,’’ ‘‘Changing build configurations’’ to ‘‘fix configuration bugs,’’

and ‘‘Improving performance for a specific environment’’ to ‘‘fix pervasive bugs,’’ or ‘‘fix non-functional bugs.’’ We thus consider leveraging on the

code characteristics of these identified samples to identify more influential changes.

4 LEARNING TO CLASSIFY ICs

Beyond the observational study reported in Section 3, we propose an approach to identify influential changes on-the-fly. The objective is to

classify, when a change is being submitted, whether it should be considered with care as it could be influential or not (ie, binary prediction: IC or

non-IC). Note that this approach does not classify a commit into specific IC types described in Section 3. To that end, the approach leverages

machine learning (ML) techniques. In our study, the learning process is performed based on the dataset yielded by the systematic postmortem

analysis and whose labels were manually confirmed. In this section, we describe the features that we use to build classifiers as well as the

quantitative assessment that was performed.

4.1 Machine learning features for ICs

A change submitted to a project repository contains information on what the change does (in commit messages), files touched by the change, the

number of edits performed by the change, and so on. On the basis of the experience gathered during the manual analysis of influential changes

in Section 3, we extract a number of features to feed the ML algorithms. The summary of features we used in this study is listed in Table 8 and

the following sections describe more details on the features.

4.1.1 Structural features

First, we consider common metrics that provide hints on structural characteristics of a change. These metrics include (a) the number of files

simultaneously changed in a single commit, (b) the number of lines added to the program repository by the commit, and (c) the number of lines

removed from the code base.

4.1.2 Natural language terms in commit messages

During the observational study, we noted that commit messages already contain good hints on the importance of the change that they propose.

We use the bag-of-words12 model to compute the frequency of occurrence of words and use it as a feature. In addition, we noted that developers

may be emotional in the description of the change that they propose. Thus, we also compute the subjectivity and polarity of commit messages

based on sentiment analysis28-31 techniques.

14 of 25 LI ET AL.

TABLE 8 Features used in learning a prediction model for ICs

Category Feature Type Description

Structural # files Numeric Number of files simultaneously changed in a single commit.

l-added Numeric Number of lines added to the program repository by the commit.

l-removed Numeric number of lines removed from the code base by the commit.

NL Terms # freq(tokeni) Numeric Frequency of occurrence of tokeni. The number of features varies for each project.

Subjectivity Boolean Binary value indicating whether a commit message is subjective or objective.

Polarity Boolean Binary value indicating whether a commit message is negative or positive

Co-change Max. PageRank Numecric Maximum value of PageRank for each file in a commit.

PageRank is computed in a co-change graph built on a revision history of a project.

Min. PageRank Numeric Minimum value of PageRank for each file in a commit.

Betweenness Centrality Numeric Delta of the betweenness centrality values of files between current and previous commits.

Closeness Centrality Numeric Delta of the closeness centrality values of files between current and previous commits.

4.1.3 Co-change impact

Finally, we consider that the frequency to which a pair of files are changed together can be an indication of whether a given change commit

affecting both files (or not) is influential.

In our experiments, for each commit, we build a co-change graph of the entire project taking into account the history of changes until the time

of that commit. Then, considering files that are actually touched by the change commit, we extract common network metrics.

PageRank32 is a link analysis algorithm for ‘‘measuring’’ the importance of an element, namely, a page, in a hyperlinked set of documents such

as the world wide web. In our study, this metric is used for computing the likelihood that a file is changed together with other files. Considering a

co-change graph as a linked set, we extract PageRank values for all files. When a commit change is applied, the co-change graph can be changed

and then we re-compute new PageRank values. We take (newly computed) PageRank values of changed files in a commit after applying the

commit to the co-change graph. Among the values, the minimum and maximum are used for features.

Centrality metrics are commonly used in social network analysis to determine influential people or to identify key nodes in networks. We use

these metrics to represent how much a file is well-connected with other changed files in this study. In our experiments, we focus on computing

betweenness centrality33 and closeness centrality34 metrics for all files associated with a commit change. We compute betweenness and closeness

centrality metrics of each file involved in a commit. After taking the sum of each centrality metric for all files in the commit, we then compute the

𝛿 of the sum between the current and previous commits. The 𝛿 of each centrality metric is used as our feature.

4.2 Influential change classification

In this section, we present the parameters of our machine learning classification experiments for predicting influential changes. In these

experiments, we assess the quality of our features for accurately classifying influential changes. We perform tests with two popular classifiers,

the Naïve Bayes12,13 and Random Forest.14

In the process of our validation tests, we are interested in assessing: (a) whether connectivity on co-change graphs correlates with a probability

for a relevant change to be an IC; (b) if natural language information in commit messages are indicative of ICs; (c) if structural information of

changes are indicative of ICs; (d) whether combinations of features is best for predicting ICs; (e) if our approach can discover ICs beyond the

types of changes discovered with postmortem analysis.

4.2.1 Experiment setup

To compute the feature vectors for training the classifiers, we used a high-performance computing system35 to run parallel tasks for building

co-change graphs for the various project subjects. After extracting the feature metrics, we preprocessed the data and ran 10-fold cross validation

tests to measure the performance of the classification.

Preprocessing. Influential software changes likely constitute a small subset of all changes committed in the project repositories. Our manual

analysis yielded very few influential changes leading to a problem of imbalanced datasets in the training data. Since we try to identify influential

changes, which constitute the minority classes and learning algorithms are not adapted to imbalanced datasets, we use oversampling techniques

to adjust the class distribution. In our experiments, we leverage the Synthetic Minority Over-sampling Techniques (SMOTE).36

Evaluation Measures. To quantitatively evaluate the performance of our approach for predicting influential changes, we used standard metrics

in ML, namely, Precision, Recall, and F-measure.10,13,37 Precision quantifies the effectiveness of our machine learning-based approach to point to

changes that are actually influential. Recall on the other hand explores the capability of our approach to identify most of the influential changes

in the commits set. Finally, we compute the F-measure, the harmonic mean between Recall and Precision. We consider that both Precision and

Recall are equally important and thus, they are equally weighted in the computation of F-measure.

LI ET AL. 15 of 25

TA
B

LE
9

P
er

fo
rm

an
ce

co
m

p
ar

is
o

n
u

si
n

g
th

e
N

aï
ve

B
ay

es
an

d
R

an
d

o
m

F
o

re
st

cl
as

si
fi

er
s

A
lg

o
ri

th
m

C
o

m
m

o
n

s-
C

o
m

m
o

n
s-

C
o

m
m

o
n

s-
C

o
m

m
o

n
s-

C
o

m
m

o
n

s-
C

o
m

m
o

n
s-

C
o

m
m

o
n

s-
St

o
rm

A
ve

ra
ge

co
d

ec
co

lle
ct

io
n

s
co

m
p

re
ss

cs
v

io
la

n
g

m
at

h

F
-M

ea
su

re
N

B
9

5
.1

9
2

.9
9

1
.5

8
4

.2
9

8
.5

8
9

.2
9

4
.3

8
6

.1
9

1
.5

(I
n

fl
u

en
ti

al
C

la
ss

)
R

F
9

7
.4

9
6

.4
9

8
.2

7
7

.8
9

7
.0

9
5

.0
9

9
.1

9
7

.8
9

4
.8

F
-M

ea
su

re
N

B
9

3
.5

8
7

.5
8

3
.9

9
2

.7
9

8
.1

7
9

.5
9

2
.6

8
6

.5
8

9
.3

(N
o

n
In

fl
u

en
ti

al
C

la
ss

)
R

F
9

7
.0

9
3

.9
9

7
.1

9
0

.5
9

6
.3

9
2

.9
9

8
.9

9
7

.5
9

5
.5

16 of 25 LI ET AL.

TABLE 10 Ten-fold cross validation on influential changes using Random Forest with different metrics combinations. CC: co-change
features. NL: natural language terms on commit messages. SI: structural features

Influential Class Non-Influential Class

Project Name Metrics Precision Recall F-Measure Precision Recall F-Measure

Commons-codec CC 97.5 97.5 97.5 96.9 96.9 96.9

NL 100.0 92.5 96.1 91.4 100.0 95.5

SI 81.0 85.0 82.9 80.0 75.0 77.4

CC NL 100.0 95.0 97.4 94.1 100.0 97.0

CC SI 95.0 95.0 95.0 93.8 93.8 93.8

NL SI 100.0 95.0 97.4 94.1 100.0 97.0

ALL 100.0 95.0 97.4 94.1 100.0 97.0

Commons- CC 90.5 92.7 91.6 87.5 84.0 85.7

collections NL 94.9 90.2 92.5 85.2 92.0 88.5

SI 80.4 90.2 85.1 80.0 64.0 71.1

CC NL 97.3 87.8 92.3 82.8 96.0 88.9

CC SI 86.7 95.1 90.7 90.5 76.0 82.6

NL SI 95.1 95.1 95.1 92.0 92.0 92.0

ALL 95.2 97.6 96.4 95.8 92.0 93.9

Commons- CC 92.9 96.3 94.5 94.1 88.9 91.4

compress NL 100.0 96.3 98.1 94.7 100.0 97.3

SI 89.7 96.3 92.9 93.8 83.3 88.2

CC NL 100.0 96.3 98.1 94.7 100.0 97.3

CC SI 87.1 100.0 93.1 100.0 77.8 87.5

NL SI 100.0 100.0 100.0 100.0 100.0 100.0

ALL 96.4 100.0 98.2 100.0 94.4 97.1

Commons-csv CC 40.0 36.4 38.1 65.0 68.4 66.7

NL 100.0 63.6 77.8 82.6 100.0 90.5

SI 100.0 81.8 90.0 90.5 100.0 95.0

CC NL 100.0 54.5 70.6 79.2 100.0 88.4

CC SI 66.7 54.5 60.0 76.2 84.2 80.0

NL SI 100.0 72.7 84.2 86.4 100.0 92.7

ALL 100.0 63.6 77.8 82.6 100.0 90.5

Commons-io CC 93.9 93.9 93.9 92.6 92.6 92.6

NL 100.0 97.0 98.5 96.4 100.0 98.2

SI 82.5 100.0 90.4 100.0 74.1 85.1

CC NL 100.0 97.0 98.5 96.4 100.0 98.2

CC SI 94.1 97.0 95.5 96.2 92.6 94.3

NL SI 100.0 97.0 98.5 96.4 100.0 98.2

ALL 97.0 97.0 97.0 96.3 96.3 96.3

Commons-lang CC 86.5 88.9 87.7 82.6 79.2 80.9

NL 94.4 93.1 93.7 89.8 91.7 90.7

SI 72.2 79.2 75.5 63.4 54.2 58.4

CC NL 95.8 95.8 95.8 93.8 93.8 93.8

CC SI 91.9 94.4 93.2 91.3 87.5 89.4

NL SI 98.5 93.1 95.7 90.4 97.9 94.0

ALL 97.1 93.1 95.0 90.2 95.8 92.9

Commons-math CC 95.4 96.3 95.9 95.7 94.7 95.2

NL 100.0 100.0 100.0 100.0 100.0 100.0

SI 76.3 80.6 78.4 76.1 71.3 73.6

CC NL 100.0 100.0 100.0 100.0 100.0 100.0

CC SI 96.4 98.1 97.2 97.8 95.7 96.8

NL SI 100.0 98.1 99.1 97.9 100.0 98.9

ALL 100.0 98.1 99.1 97.9 100.0 98.9

Spring- NL 96.2 90.9 93.5 84.6 93.2 88.7

framework SI 75.8 88.2 81.5 68.3 47.5 56.0

NL SI 96.0 86.4 90.9 78.6 93.2 85.3

Storm CC 97.7 95.5 96.6 95.1 97.5 96.2

NL 97.8 98.9 98.3 98.7 97.5 98.1

SI 90.0 80.9 85.2 80.7 89.9 85.0

CC NL 97.8 97.8 97.8 97.5 97.5 97.5

CC SI 97.7 95.5 96.6 95.1 97.5 96.2

NL SI 98.9 98.9 98.9 98.7 98.7 98.7

ALL 97.8 97.8 97.8 97.5 97.5 97.5

Wildfly NL 93.7 98.4 96.0 98.0 92.6 95.2

SI 78.7 82.3 80.5 79.0 75.0 77.0

NL SI 96.0 99.2 97.6 99.0 95.4 97.2

LI ET AL. 17 of 25

4.2.2 Assessment results

In the following paragraphs, we detail the classification results for influential changes using 10-fold cross validation on labeled data. In addition, we

present experimental results of the performance of the classification models with new dataset labeled based on developer accepted definitions

of influential challenges.

Cross validation is a common model validation in statistics to assess how the results of a statistical analysis will generalize to an independent

data set. In machine learning experiments, it is common practice to rely on k-fold cross validation where the test is performed k times, each time

testing on a kth portion of the data. We perform 10-fold cross validation on the labeled dataset built in Section 3.

In the first round of experiments, we built feature vectors with all features considered in our study. We then built classifiers using Naïve Bayes

and Random Forest. Table 9 depicts the F-measure performance in 10-fold cross validation for the two algorithms. Although Random Forest

performs on average better than Naïve Bayes, this difference is relatively small.

Table 10 details the validation results with Random Forest for different combinations of feature groups for the experiments. We considered

separately features relevant to co-change metrics, commit messages written in a natural language, and the structural information of changes. We

also combined those type of features to assess the potential performance improvement or deterioration.

Co-change metrics, which are the most tedious to extract (hence missing from two projects in Table 10 because of too large graphs) histories,

allow to yield an average performance of 87.7% precision, 87.5% recall, and 87.6% F-measure.

Natural language terms in commit messages also allow yielding an average performance of 94.9% precision, 94.4% recall, and 94.4% F-measure

for the influential change class on average.

Our experiments also revealed that structural features of changes yield the worst performance rates, although those performances reached

80.5% F-measure on average. For some projects, however, these metrics lead to a performance slightly above 50% (random baseline performance).

The performance results shown in Table 10 also highlight the fact that, on average, combining different features contributes to improving the

performance of influential change classification. Combining co-change and natural language terms in commit messages achieves on average a

precision, recall, and F-measure performance of 95.6%, 94.5%, and 94.5%, respectively. Similarly, combining co-change and structural features

shows the F-measures at 90.1% on average. Combinations of natural language and structural information show 95.6% F-measure. Finally,

combining all features leads to an average performance of 96.1% precision, 94.9% recall, and 95.2% F-measure. However, no feature combination

achieves the best performance in every project, possibly suggesting these features are specific to projects.

Figure 6 further shows graphically the Area Under the Receiver Operating Characteristic (AUROC) for the predictors including all features.

Overall, we note that the performance of the classifiers is high.

4.2.3 Generalization of influential change features

In previous experiments, we have tested the machine learning classifier with influential change data labeled based on three specific criteria

(changes that fix controversial/popular issues, isolated changes and changes referenced by other changes). These categories are however strictly

related to our initial intuitions for collecting influential changes in a postmortem analysis study. There are likely many influential changes that

do not fit into those categories. Our objective is thus to evaluate whether the features that we use for classification of influential changes are

still relevant in the wild. In other words, the experiment aims at figuring out the generalizability of the features rather than the models used in

previous experiments.

FIGURE 6 Receiver operating characteristic for
predictors in all 10 projects

18 of 25 LI ET AL.

TABLE 11 Ten-fold cross validation on randomly sampled and then manually labelled data. We show results considering
all features (NL and SI features in the case of Spring-framework and Wildfly because of missing CC features)

Project Name Influential Class Non-Influential Class

Precision Recall F-Measure Precision Recall F-Measure

Commons-codec 100.0 88.9 94.1 87.5 100.0 93.3

Commons-collections 100.0 88.9 94.1 83.3 100.0 90.9

Commons-compress 0.0 0.0 0.0 66.7 100.0 80.0

Commons-io 86.7 86.7 86.7 75.0 75.0 75.0

Commons-lang 97.3 90.0 93.5 85.2 95.8 90.2

Commons-math 100.0 31.6 48.0 71.1 100.0 83.1

Spring-framework 97.5 96.9 97.2 91.7 93.2 92.4

Storm 100.0 88.2 93.8 88.2 100.0 93.8

Wildfly 100.0 96.4 98.2 95.8 100.0 97.8

We randomly sample a significant set of changes within our dataset of 10 project commits. Out of the 48 272 commits from the dataset, we

randomly consider 381 commits (ie, the exact number provided by the sample size calculator*** using 95% for the confidence level and 5 for the

confidence interval).

Again, we manually label the data based on the categories of influential changes approved by developers (cf Section 3.4). We cross check our

labels among authors and perform 10-fold cross validation using the same features presented in Section 4.2.1 for influential change classification.

The results are presented in Table 11.

The precision of 10-fold cross validation for influential changes is on average 86.8%, while the average recall is 74%. These results suggest

that overall, the features provided in our study are effective even in the wild. For some projects, the performance is especially poor, mainly

because (a) their training data is limited (Commons-CSV has only one labeled influential change, making it infeasible to even oversample; thus no

results are available in the table) and (b) currently, we do not take into account some features of influential changes related to documentation.

Developers have already brought up this aspect in the survey.

4.2.4 Evaluation summary

From our evaluation results we have found that: (a) co-change metrics allow to successfully predict influential changes with an average 87.6%

F-measure; (b) features based on terms in commit messages can predict influential changes with high precision (average of 94.9%) and recall

(average of 94.4%); (c) Structural features can be leveraged to successfully predict influential changes with an average F-measure performance of

80.5%; (d) overall, combining features often achieves a better classification performance than individual feature groups. For example, combining

all features showed 96.1% precision, 94.9% recall, and 95.2% F-measure on average; (e) with the features we collected, our classification model

has an acceptable performance in the wild, ie, with different types of influential changes (beyond the ones we relied upon to infer the features).

5 LIMITATIONS AND THREATS TO VALIDITY

The results of our study support the concept of ‘‘risky changes’’ introduced by Shihab et al.38 Influential changes can be risky (in the sense that

they may have negative effects) but may also be stimulating (in the sense that they may have positive impacts). We have further considered in

our work, that the ‘‘influence’’ of the changes can be visible on three entities: the code base evolution, the user base adoption, and the developer

team dynamics.

Concretely, the categories that we have inferred and validated with code reviewers, as well as the dataset that we have built are important

artefacts that can spark research around the topic of influential changes.

Our work, which we recognize as a preliminary investigation, opens new research directions for recommending changes to the attention of

other developers in the team, for dismissing or delaying changes that may affect software adoption, for rewarding/penalizing authors of changes

that will have positive/negative effects.

The main limitations of our work include:

• the generality in defining and identifying influential changes. We have opted in this work to not focus on a specific category of influential

changes. Instead, we investigate them broadly and leave in-depth characterization to future works.

• our classification model, which shows high performance in predicting influential changes, could be entirely overfitting to the dataset partly

because of a small number of instances used in training and testing a model. Future work would require the application of the model to a

larger and more diverse dataset.

Our study raises several threats to validity. This section outlines the most salient ones.

*** http://www.surveysystem.com/sscalc.htm

http://www.surveysystem.com/sscalc.htm

LI ET AL. 19 of 25

Internal validity. The authors have manually labeled themselves the influential changes as it was prohibitively costly to request labeling by

a large number of developers. We have mitigated this issue by clearly defining criteria for selecting influential changes and by performing

cross-checking. Another threat relates to the number of developers who participated in the code developer study for approving the categories

of influential changes. We have attempted to mitigate this threat by launching advertisement campaigns targeting thousands of developers. We

have further focused on quality and representative developers by targeting those with some code review experience.

Our dataset used for building a prediction model in Section 4 is highly imbalanced, partly because of the nature of ICs. This might affect the

results shown in Section 4.2. To mitigate the impact, we applied oversampling and undersampling techniques.

Merging feature data of each project is not eligible since each project has a different number of features because of NL features even though

it might alleviate the impact of imbalanced data.

External validity. Although we considered a large dataset of commit changes, this data may not represent the universe of real-world programs.

Indeed, the study focused on open-source software projects written in Java. The metrics and features used for predicting influential changes in

this context may not be representative for other contexts.

The features used in our study (in Section 4) are limited to three categories. As listed in Shihab et al,38 there is a more number of feature

categories such as time and personnel. Applying more features to building a prediction model might improve the performance. However, some

features are not eligible for our subjects. For example, features related to ‘‘commit time’’ is not reliable in open source projects since commit time

is often based on several different time zones and the working time of developers are not precisely managed.

Construct validity. Finally, we selected features based on our intuitions on influential changes. Our study may have thus overlooked more

discriminative features. To mitigate this threat, first, we have considered several features, many of which are commonly known in the literature;

second, we have repeated the experiments based on data labeled following new category labels of influential changes approved by developers.

Furthermore, our experiment focuses only on project-specific classification rather than cross-project setting. Cross-project classification can be

useful since some projects may not have a sufficient number of data (ie, commits) to build a training set. However, NL features are project-specific

and cannot be applied to a cross-project setting. Our future work includes extracting more features for cross-project IC classification.

6 RELATED WORK

This section discusses four groups of related work: (a) software evolution, (b) change impact analysis, (c) defect prediction, and (d) developer

expertise. These topics address several relevant aspects of our study.

6.1 Software evolution

Changing any file in a software system implies that the system evolves in a certain direction. Many studies dealt with software evolution in

different ways. D'Ambros et al39 presented the evolution radar that visualizes file and module-level coupling information. Although this tool does

not directly predict or analyze the change impact, it can show an overview of coupling relationships between files and modules. Chronos40

provides a narrowed view of history slicing for a specific file. The tool analyzes a line-level history of a file. This reduces the time required to

resolve program evolution tasks. Girba et al41 proposed a metric called code ownership to illustrate how developers drive software evolution. We

used the metric to examine the influence of a change.

API evolution and deprecation, which often leads to important collateral evolutions can be influential in project development. Several

studies42-48 in the literature have investigated such evolution. For example, Dagenais and Robillard have proposed SemDiff,42 a framework for

recommending replacements of non-trivial changes. Robbes et al43 have studied the importance in practice of API deprecation for developers.

Teyton et al45 have built a framework for analyzing software library dependencies to support developers in library migrations based on evolution

trends.

6.2 Change impact analysis

Many previous studies revealed a potential impact of software changes. There is a set of techniques that use dynamic analysis to identify change

impacts. Ren et al2 proposed Chianti. This tool first runs test cases on two subsequent program revisions (after/before a change) to figure out

atomic changes that describe behavioral differences. The authors provided a plug-in for Eclipse, which helps developers browse a change impact

set of a certain atomic change. FaultTracer3 identifies a change impact set by differentiating the results of test case executions on two different

revisions. This tool uses the extended call graphs to select test cases affected by a change.

Brudaru and Zeller1 pointed out that the long-term impact of changes must be identified. To deal with the long-term impact, the

authors proposed a change genealogy graph, which keeps track of dependencies between subsequent changes. Change genealogy captures

addition/change/ deletion of methods in a program. It can measure the long-term impact on quality, maintainability, and stability.6 In addition, it

can reveal cause-effect chains7 and predict defects.8

Although dynamic analysis and change genealogy can pinpoint a specific element affected by a change in source code, its scope is limited to

executed statements by test cases. This can miss many affected elements in source code as well as non-source code files such as build scripts

20 of 25 LI ET AL.

and configuration settings. Revision histories can be used for figuring out files changed frequently together. Zimmermann et al49 first studied

co-change analysis in which the authors revealed that some files are commonly changed together. Ying et al50 proposed an approach to predicting

files to change together based on revision histories.

There have been cluster-based techniques for change impact analysis. Robillard and Dagenais4 proposed an approach to building change

clusters based on revision histories. Clusters are retrieved by analyzing program elements commonly changed together in change sets. Then, the

approach attempts to find matching clusters for a given change. The matching clusters are regarded as the change impact of the given change.

Sherriff and Williams5 presented a technique for change impact analysis using singular value decomposition (SVD). This technique basically

figures out clusters of program elements frequently changed together. When clustering changes, the technique performs SVD. The clusters can

be used for identifying the change impact of an incoming change.

In addition, Shihab et al studied risky changes38 in an industrial project. Risky changes are, rather than just a bug, software changes that

developers need to pay additional attention to avoid a negative impact on their product. They built a prediction model based on change-relevant

features such as change time, code size, and the number of files changed. The model achieves 67% recall and 87% precision. The study explored

a different perspective of influential changes; the context was an industrial case, and risky changes are labeled by the developers. On the other

hand, our study revealed latent ICs in open source projects. Combining these two perspectives is our future direction.

Identifying high-impact defects51 is highly-relevant to our work as well. This type of defects includes breakage and surprise defects in detail.

Shihab51 suggested a prediction model to classify the high-impact defect types. They figured out that breakage defects are relevant to the

number of pre-release defects and file size, while the time between the latest pre-release change and the release date lead to surprise defects.

These findings are helpful to find latent ICs in addition to our methods.

6.3 Change pattern mining

Discovering common change patterns may reveal influential changes since those patterns appear across different projects.

There have been several empirical studies on change patterns. Pan et al52 explored common bug fix patterns in Java programs to understand

how developers change programs to fix a bug.

Martinez and Monperrus further investigated repair models that can be utilized in program fixing. Zhong and Su53 conducted a large-scale

study on bug fixing changes in open source projects. Tan et al54 analyzed anti-patterns that may interfere with the process of automated program

repair. While most pattern discovery studies focused on statement-level (ie, coarse-grained) change patterns, Liu et al55 investigated fine-grained

(eg, expression-level) code changes to discover better change elements for program repair. Koyuncu et al56 explored how developers manually

or automatically make program changes in the Linux kernel project and their impact; this study showed changes generated by different tools may

have different impacts on a software project.

In addition, several studies have proposed techniques to automate change pattern discovery. SYDIT57 and Lase58 generate code changes to

other code snippets with the extracted edit scripts from examples in the same application. RASE59 focuses on refactoring code clones with Lase

edit scripts.58 FixMeUp60 extracts and applies access control templates to protect sensitive operations.

REFAZER implements an algorithm for learning syntactic program transformations for C# programs from examples61 to correct defects in

student submissions.

Genesis62 heuristically infers application-independent code transform patterns from multiple applications to fix bugs, but its code transform

patterns are tightly coupled with the nature and syntax of three kinds of bugs (ie, null pointer, out of bounds, and class cast defects). Koyuncu

et al63 have generalized this approach with FixMiner to mining fix patterns for all types of bugs given a large dataset.

Reudismam et al64 tried to learn quick fixes by mining code changes to fix PMD violations.65 Their approach aims at learning code change

templates to be systematically applied to refactor code. Li et al66 leveraged convolutional neural networks, which is one of the deep neural

network techniques, to automatically cluster commons fix patterns from more than 88 000 bug-fixing changes. Those fix patterns can successfully

fix real bugs.67

6.4 Program repair

Automated program repair (APR) can promote influential changes since most program repair techniques focus on common and recurring bug

types. These techniques often locate and fix similar bugs by scanning all files in a project. Thus, applying APR techniques can produce massive

program changes at once and this could be influential for the further evolution of the project.

Most of program repair studies focus on automating the entire process of fixing bugs, ie, localizing a bug, generating a patch, and validating the

patch. Automated program repair is pioneered by GenProg.68,69 This approach leverages genetic programming to create a patch for a given buggy

program. It is followed by an acceptability study70 and systematic evaluation.71 Regarding the acceptability issue, Kim et al72 advocated GenProg

may generate nonsensical patches and proposed PAR to deal with the issue. PAR leverages human-written patches to define fix templates and can

generate more acceptable patches. HDRepair73 leverages bug fixing history of many projects to provide better patch candidates to the random

search process. Recently, LSRrepair74 proposes a live search approach to the ingredients of automated repair using code search techniques.

LI ET AL. 21 of 25

While GenProg relies on randomness, utilizing program synthesis techniques75-77 can directly generate patches even though they are limited to a

certain subset of bugs. Other notable approaches include contract-based fixing,78 program repair based on behavior models,79 and conditional

statement repair.80

While fully automated repair techniques can be heavy and verbose in practice, patch suggestion techniques are light-weight but involve human

developers in the loop. MintHint81 generates repair hints based on statistical analysis. Tao et al82 investigated how automatically generated

patches can be used as debugging aids. Bissyandé suggests patches for bug reports based on the history of patches.83 Caramel84 focuses on

potential performance defects and suggests specific types of patches to fix those defects.

Many studies have explored properties of program repair. Monperrus85 criticized issues of patch generation learned from human-written

patches.72 Barr et al discussed the plastic surgery hypothesis86 that theoretically illustrates graftibility of bugs from a given program. Long

and Rinard analyzed the search space issues for population-based patch generation.87 Smith et al presented an argument of overfitting issues

of program repair techniques.88 Koyuncu et al56 compared the impact of different patch generation techniques in Linux kernel development.

Benchmarks for program repair are proposed for different programming languages.89,90 On the basis of a benchmark, a large-scale replication

study was conducted.91 TBar92 dissects the relationships between common fix patterns suggested by existing studies such as PAR72 and bugs in

the Defects4J benchmark.90

6.5 Defect prediction

Changing a program may often introduce faults.93,94 Thus, fault prediction at an early stage can lead developers to achieve a better software

quality. Kim et al95 proposed a cache-based model to predict whether an incoming change may introduce or not. They used BugCache and

FixCache that record entities and files likely to introduce a bug and fix the bug if they are changed. The results of their empirical study showed

that the caches 46% to 95% accuracy in seven open source projects.

Machine learning classification can be used for defect prediction as well. Kim et al10 presented an approach to classifying software changes

into buggy or clean ones. They used several features such as number of lines of added/deleted code, terms in change logs, and cyclomatic

complexity. The authors conducted an empirical evaluation on 12 open source projects. The result shows 78% prediction accuracy on average.

In addition, Shivaji et al96 proposed a feature selection technique to improve the prediction performance of defect prediction. Features are not

limited to metrics of source code; Jiang et al97 built a prediction model based on individual developers. Defect prediction techniques are often

faced with imbalanced datasets. Bird et al98 pointed out that unfair and imbalanced datasets can lead to bias in defect prediction.

6.6 Developer expertise

It is necessary to discuss developer expertise since influential changes imply that the developer who made the changes can be influential to other

developers.

As the size of open-source software projects is getting larger, developer networks are naturally constructed and every activity in the network

may affect other developers substantially. Hong et al99 reported a result of observing a developer social network. The authors investigated

Mozilla's bug tracking site to construct a developer social network (DSN). In addition, they collected general social networks (GSNs) from ordinary

social communities such as Facebook and Amazon. This paper provides a comparison between DSN and GSNs. Findings described in this paper

include: (a) DSN does not follow power-law degree distribution while GSNs do and (b) the size of communities in DSNs is smaller than that of

GSNs. This paper also reports the result of an evolution analysis on DSNs. DSNs tend to grow over time but not much as GSNs do.

Onoue et al100 studied and enumerated developer activity data in Github.com. It classifies good developers, tries to understand developers,

and differentiates types of developers. However, the paper does not provide any further implication. In addition, there is no result of role analysis

and social structure.

Pham et al101 reported the results of a user study which has been conducted to reveal a testing culture in OSS. The authors have interviewed 33

developers of GitHub first and figured out the transparency of testing behaviors. Then, an online questionnaire has been sent to 569 developers

of GitHub to find out testing strategies.

7 CONCLUSION AND FUTURE WORK

In software revision histories, we can find many cases in which a few lines of software changes can positively or negatively influence the whole

project, while most changes have only a local impact. In addition, those influential changes can constantly affect the quality of software for a long

time. Thus, it is necessary to identify the influential changes at an early stage to prevent project-wide quality degradation or immediately take

advantage of new software new features.

In this paper, we reported results of a postmortem analysis on 48 272 software changes that are systematically collected from 10 open source

projects and labeled based on key quantifiable criteria. We then used open-card sorting to propose categories of influential changes. After

developers have validated these categories, we consider examples of influential changes and extract features such as complexity and terms in

22 of 25 LI ET AL.

change logs in order to build a classification model. We showed that the classification features are efficient beyond the scope of our initial labeled

data on influential changes.

The findings presented in this paper may shed light on how to interpret and assess a code change. As our study introduces different ways to

detect ICs with a postmortem analysis, developers would recognize the presence and the impact of ICs. In addition, this study investigates the

potential characteristics of ICs, which may help follow-up studies formally define ICs. Further investigation can discover more characteristics of

ICs, which can be used for building a prediction model of ICs. Earlier identification of ICs can minimize the negative impact of such changes and

provide a better understanding of the software system under development.

Our future work will focus on the following topics:

• Influential changes may affect the popularity of projects. We will investigate the correlation between influential changes and popularity

metrics such as the number of new developers and new fork events.

• In our study, we used only metrics for source code. However, features of developers can have correlations with influential changes. We

will study whether influential changes can make developer influential and vice versa.

• Once influential changes are identified, it is worth finding out who can benefit from the changes. Quantifying the impact of the influential

changes to developers and users can significantly encourage further studies.

ACKNOWLEDGEMENT

This work is supported by the Fonds National de la Recherche (FNR), Luxembourg, under projects RECOMMEND 15/IS/10449467 and

FIXPATTERN C15/IS/9964569.

AVAILABILITY

We make available all our observational study results, extracted feature vectors, and developer survey results in this work. See https://github.

com/serval-snt-uni-lu/influential-changes.

ORCID

Dongsun Kim https://orcid.org/0000-0003-0272-6860

REFERENCES

1. Brudaru II, Zeller A. What is the long-term impact of changes? In: Proceedings of the 2008 International Workshop on Recommendation Systems

for Software Engineering; 2008; New York, NY, USA:30-32.

2. Ren X, Shah F, Tip F, Ryder BG, Chesley O. Chianti: a tool for change impact analysis of java programs. In: Proceedings of the 19th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications; 2004; New York, NY, USA:432-448.

3. Zhang L, Kim M, Khurshid S. FaultTracer: a change impact and regression fault analysis tool for evolving java programs. In: Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software Engineering; 2012; New York, NY, USA:40:1-40:4.

4. Robillard MP, Dagenais B. Retrieving task-related clusters from change history. In: 15th Working Conference on Reverse Engineering, 2008. WCRE

'08. Antwerp, Belgium: 2008:17-26.

5. Sherriff M, Williams L. Empirical software change impact analysis using singular value decomposition. In: 1st International Conference on Software

Testing, Verification, and Validation. Lillehammer, Norway: April 2008:268-277.

6. Herzig KS. Capturing the long-term impact of changes. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering -

Volume 2. New York, NY, USA: ACM: 2010:393-396.

7. Herzig K, Zeller A. Mining cause-effect-chains from version histories. In: 2011 IEEE 22nd International Symposium on Software Reliability Engineering

(ISSRE). Hiroshima, Japan: November 2011:60-69.

8. Herzig K, Just S, Rau A, Zeller A. Predicting defects using change genealogies. In: 2013 IEEE 24th International Symposium on Software Reliability

Engineering (ISSRE). Pasadena, CA, USA: November 2013:118-127.

9. Valdivia Garcia H, Shihab E. Characterizing and predicting blocking bugs in open source projects. In: Proceedings of the 11th Working Conference

on Mining Software Repositories. New York, NY, USA: ACM; 2014: 72-81.

10. Kim S, Whitehead EJ, Zhang Y. Classifying software changes: clean or buggy? IEEE Trans Softw Eng. March 2008;34(2):181-196.

11. Beyer D, Noack A. Clustering software artifacts based on frequent common changes. In: Proceedings of the 13th international Workshop on Program

Comprehension; 2005:259-268.

12. Lewis DD. Naive (Bayes) at forty: the independence assumption in information retrieval. Machine Learning: ECML-98. Berlin Heidelberg: Springer;

April 1998:4-15en.

13. Alpaydin E. Introduction to machine learning. Cambridge, Mass: MIT Press; 2004.

14. Breiman L. Random Forests. Mach Learn. 2001;45(1):5-32.

15. Palix N, Saha S, Thomas G, Calvès C, Lawall JL, Muller G. Faults in Linux: ten years later. In: Asplos'11: Proceedings of the 2011 International

Conference on Architectural Support for Programming Languages and Operating Systems; 2011; Newport Beach, CA, USA: 305-318.

16. Padioleau Y, Lawall JL, Hansen RR, Muller G. Documenting and automating collateral evolutions in Linux device drivers. In: Eurosys'08: Proceedings

of the 2008 ACM Sigops/Eurosys European Conference on Computer Systems; 2008; Glasgow, Scotland:247-260.

https://github.com/serval-snt-uni-lu/influential-changes
https://github.com/serval-snt-uni-lu/influential-changes
https://orcid.org/0000-0003-0272-6860
https://orcid.org/0000-0003-0272-6860

LI ET AL. 23 of 25

17. Padioleau Y, Lawall JL, Muller G. Understanding collateral evolution in linux device drivers. In: Proceedings of the 2006 ACMSIGOPS/EUROSYS

European Conference on Computer Systems, Eurosys'06; 2006; Leuven, Belgium:59-71.

18. Bissyandé TF, Revéillère L, Lawall J, Muller G. Diagnosys: automatic generation of a debugging interface to the linux kernel. In: 2012 Proceedings of

the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE); 2012; Essen, Germany:60-69.

19. Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Di Penta M, Oliveto R, Poshyvanyk D. API Change and Fault Proneness: A Threat to the Success

of Android Apps. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013; 2013; New York, NY,

USA:477-487.

20. Dig D, Johnson R. How do APIs evolve? A story of refactoring. J Softw Maint Evol Res Pract. 2006;18(2):83-107.

21. Lawall J. Automating source code evolutions using coccinelle. Kernel Recipes – https://kernel-recipes.org/en/2013/; 2013.

22. Rousseeuw PJ, Driessen KV. A fast algorithm for the minimum covariance determinant estimator. Technometrics. 1999;41(3):212-223.

23. Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the

median. J Exp Soc Psychol. 2013;49(4):764-766.

24. Nielsen J. Card sorting to discover the users' model of the information space. NN/g – http://www.nngroup.com/articles/usability-testing-1995-

sun-microsystems-website/; 1995.

25. Spencer D. Card sorting: a definitive guide. http://boxesandarrows.com/card-sorting-a-definitive-guide/; 2004.

26. Lientz BP, Swanson EB, Tompkins GE. Characteristics of application software maintenance. Commun ACM. June 1978;21(6):466-471. http://doi.

acm.org/10.1145/359511.359522

27. Gousios G. The ghtorrent dataset and tool suite. In: Proceedings of the 10th Working Conference on Mining Software Repositories, MSR '13.

Piscataway, NJ, USA: IEEE Press; 2013:233-236.

28. Hu M, Liu B. Opinion feature extraction using class sequential rules. In: Proceedings of AAAI 2006 Spring Sympoia on Computational Approaches to

Analyzing Weblogs (AAAI-CAAW 2006); 2006; Palo Alto, USA:61-66.

29. Ohana B. Opinion mining with the SentWordNet lexical resource. Master's thesis. Technological University Dublin, Dublin; 2009.

30. Liu B. Sentiment analysis and subjectivity. In: Indurkhya N, Damerau FJ, eds. Handbook of natural language processing, second edition. Boca Raton, FL:

CRC Press, Taylor and Francis Group; 2010: 627-666.

31. Thelwall M, Buckley K, Paltoglou G, Cai D, Kappas A. Sentiment strength detection in short informal text. J Am Soc Inf Sci Technol.

2010;61(12):2544-2558.

32. Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. In: Proceedings of the Seventh International Conference on World

Wide Web 7, WWW7; 1998; Brisbane, Australia:107-117.

33. Freeman LC. A set of measures of centrality based on betweenness. Sociometry. March 1977;40(1):35-41.

34. Sabidussi G. The centrality index of a graph. Psychometrika. 1966;31(4):581-603.

35. Varrette S, Bouvry P, Cartiaux H, Georgatos F. Management of an academic HPC cluster: The UL experience. In: Proc. of the 2014 Intl. Conf. on

High Performance Computing & Simulation (HPCS 2014). Bologna, Italy: IEEE; 2014.

36. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321-357. https://

doi.org/10.1613/jair.953

37. Montgomery DC, Runger GC, Hubele NF. Engineering Statistics. Hoboken, NJ: Wiley. 2001.

38. Shihab E, Hassan AE, Adams B, Jiang ZM. An Industrial Study on the Risk of Software Changes. In: Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering. New York, NY, USA: ACM; 2012:62:1-62:11.

39. D'Ambros M, Lanza M, Lungu M. The evolution radar: Visualizing integrated logical coupling information. In: Proceedings of the 2006 International

Workshop on Mining Software Repositories. Shanghai, China: ACM; 2006:26-32.

40. Servant F, Jones JA. History slicing: Assisting code-evolution tasks. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering. New York, NY, USA: ACM; 2012:43:1-43:11.

41. Girba T, Kuhn A, Seeberger M, Ducasse S. How developers drive software evolution. In: Eighth International Workshop on Principles of Software

Evolution; 2005; Lisbon, Portugal, Portugal:113-122.

42. Dagenais B, Robillard MP. Semdiff: Analysis and recommendation support for api evolution. In: Proceedings of the 31st International Conference on

Software Engineering. Washington, DC, USA: IEEE Computer Society; 2009:599-602.

43. Robbes R, Lungu M, Rüthlisberger D.. How Do Developers React to API Deprecation?: The Case of a Smalltalk Ecosystem. In: Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. New York, NY, USA: ACM; 2012:56:1-56:11.

44. Sawant AA, Robbes R, Bacchelli A. On the Reaction to Deprecation of 25,357 Clients of 4+1 Popular Java APIs. In: 2016 IEEE International

Conference on Software Maintenance and Evolution (ICSME); October 2016; Raleigh, NC, USA:400-410.

45. Teyton C, Falleri J-R, Palyart M, Blanc X. A study of library migrations in java. J Softw Evol Process. 2014;26(11):1030-1052.

46. Kim E, Kim K, In HP. A multi-view api impact analysis for open spl platform. In: Proceedings of the 12th International Conference on Advanced

Communication Technology. Piscataway, NJ, USA: IEEE Press; 2010:686-691.

47. Dagenais B, Robillard MP. Recommending adaptive changes for framework evolution. ACM Trans Softw Eng Methodol. 2011;20(4):19:1-19:35.

48. Wu W, Guéhéneuc YG., Antoniol G, Kim M. Aura: A hybrid approach to identify framework evolution. In: 2010 ACM/IEEE 32nd International

Conference on Software Engineering, Vol. 1; 2010; Cape Town, South Africa:325-334.

49. Zimmermann T, Weisgerber P, Diehl S, Zeller A. Mining version histories to guide software changes. In: Proceedings of the 26th International

Conference on Software Engineering. Washington, DC, USA: IEEE Computer Society; 2004:563-572.

50. Ying ATT, Murphy GC, Ng R, Chu-Carroll MC. Predicting source code changes by mining change history. IEEE Transactions on Software Engineering.

2004;30(9):574-586.

51. Shihab E, Mockus A, Kamei Y, Adams B, Hassan AE. High-impact Defects: A Study of Breakage and Surprise Defects. In: Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering. New York, NY, USA: ACM; 2011:300-310.

52. Pan K, Kim S, Whitehead EJ. Toward an understanding of bug fix patterns. Empir Softw Eng. 2009;14(3):286-315.

https://kernel-recipes.org/en/2013/
http://www.nngroup.com/articles/usability-testing-1995-sun-microsystems-website/
http://www.nngroup.com/articles/usability-testing-1995-sun-microsystems-website/
http://boxesandarrows.com/card-sorting-a-definitive-guide/
http://doi.acm.org/10.1145/359511.359522
http://doi.acm.org/10.1145/359511.359522
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953

24 of 25 LI ET AL.

53. Zhong H, Su Z. An Empirical Study on Real Bug Fixes. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering. ACM; 2015;

Florence, Italy:913-923.

54. Tan SH, Yoshida H, Prasad MR, Roychoudhury A. Anti-patterns in Search-based Program Repair. In: Proceedings of the 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. New York, NY, USA: ACM; 2016:727-738.

55. Liu K, Kim D, Koyuncu A, Li L, Bissyandé TF, Traon YLe. A Closer Look at Real-World Patches. In: 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME); 2018; Madrid, Spain:275-286.

56. Koyuncu A, Bissyandé TF, Kim D, Klein J, Monperrus M, Le Traon Y. Impact of Tool Support in Patch Construction. In: Proceedings of the 26th ACM

Sigsoft International Symposium on Software Testing and Analysis. New York, NY, USA: ACM; 2017:237-248.

57. Meng N, Kim M, McKinley KS. Systematic editing: generating program transformations from an example. ACM SIGPLAN Notices. 2011;46(6):329-342.

58. Meng N, Kim M, McKinley KS. LASE: locating and applying systematic edits by learning from examples. In: 2013 35th International Conference on

Software Engineering (ICSE). San Francisco, CA, USA: ACM; 2013:502-511.

59. Meng N, Hua L, Kim M, McKinley KS. Does automated refactoring obviate systematic editing? In: Proceedings of the 37th International Conference

on Software Engineering, Vol. 1. Piscataway, NJ, USA: ACM; 2015:392-402.

60. Son S, McKinley KS, Shmatikov V. RoleCast: Finding Missing Security Checks when You Do Not Know What Checks Are. In: Proceedings of the 2011

ACM International Conference on Object Oriented Programming Systems Languages and Applications. ACM; 2011; New York, NY, USA:1069-1084.

61. Rolim R, Soares G, D'Antoni L, et al. Learning syntactic program transformations from examples. In: Proceedings of the 39th International Conference

on Software Engineering. Buenos Aires, Argentina: ACM; 2017:404-415.

62. Long F, Amidon P, Rinard M. Automatic inference of code transforms for patch generation. In: Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering. New York, NY, USA: ACM; 2017:727-739.

63. Koyuncu A, Liu K, FBissyandé T, et al. Fixminer: mining relevant fix patterns for automated program repair. arXiv preprint arXiv:181001791; 2018.

64. Rolim R, Soares G, Gheyi R, D'Antoni L. Learning quick fixes from code repositories. arXiv preprint arXiv:180303806; 2018.

65. Github. PMD: an extensible cross-language static code analyzer. https://pmd.github.io/; Last Accessed: Nov. 2017.

66. Liu K, Kim D, Bissyande TF, Yoo S, Traon YLe. Mining fix patterns for FindBugs violations. IEEE Trans Softw Eng. 2019. (to appear). https://doi.org/

10.1109/TSE.2018.2884955

67. Liu K, Koyuncu A, Kim D, Bissyandè TF. AVATAR: fixing semantic bugs with fix patterns of static analysis violations. In: 2019 IEEE 26th International

Conference on Software Analysis, Evolution and Reengineering (SANER); 2019; Hangzhou, China, China:1-12.

68. Weimer W, Nguyen T, Le Goues C, Forrest S. Automatically finding patches using genetic programming. In: Proceedings of the 31st International

Conference on Software Engineering. Vancouver, BC, Canada: IEEE; 2009:364-374.

69. Le Goues C, Nguyen T, Forrest S, Weimer W. Genprog: a generic method for automatic software repair. IEEE Trans Softw Eng. 2012;38(1):54.

70. Fry ZP, Landau B, Weimer W. A human study of patch maintainability. In: Proceedings of the 2012 International Symposium on Software Testing

and Analysis. Minneapolis, MN, USA: ACM; 2012:177-187.

71. Le Goues C, Dewey-Vogt M, Forrest S, Weimer W. A systematic study of automated program repair: fixing 55 out of 105 bugs for $8 each. In:

Proceedings of the 34th International Conference on Software Engineering. Zurich, Switzerland: IEEE; 2012:3-13.

72. Kim D, Nam J, Song J, Kim S. Automatic patch generation learned from human-written patches. In: Proceedings of the 2013 International Conference

on Software Engineering. San Francisco, CA, USA: ACM; 2013:802-811.

73. Le XD, Lo D, Le Goues C. History Driven Program Repair. In: Proceedings of the 23rd International Conference on Software Analysis, Evolution, and

Reengineering. Suita, Japan: IEEE; 2016:213-224.

74. Liu K, Anil K, Kim K, Kim D, Bissyandé TF. Live search of fix ingredients for automated program repair. In: Proceedings of the 25th Asia-Pacific

Software Engineering Conference; 2018; Nara, Japan: 658-662.

75. Nguyen HDT, Qi D, Roychoudhury A, Chandra S. Semfix: program repair via semantic analysis. In: Proceedings of the 2013 International Conference

on Software Engineering. San Francisco, CA, USA: IEEE; 2013:772-781.

76. Mechtaev S, Yi J, Roychoudhury A. Angelix: scalable multiline program patch synthesis via symbolic analysis. In: Proceedings of the 38th International

Conference on Software Engineering. Austin, TX, USA: ACM; 2016:691-701.

77. Mechtaev S, Yi J, Roychoudhury A. Directfix: looking for simple program repairs. In: Proceedings of the 37th International Conference on Software

Engineering, Vol. 1. Florence, Italy: ACM; 2015:448-458.

78. Wei Y, Pei Y, Furia CA, et al. Automated fixing of programs with contracts. In: Proceedings of the 19th International Symposium on Software Testing

and Analysis. Trento, Italy: ACM; 2010:61-72.

79. Dallmeier V, Zeller A, Meyer B. Generating fixes from object behavior anomalies. In: Proceedings of the 2009 IEEE/ACM International Conference

on Automated Software Engineering. Auckland, New Zealand: ACM; 2009:550-554.

80. Xuan J, Martinez M, Demarco F, et al. Nopol: automatic repair of conditional statement bugs in java programs. IEEE Trans Softw Eng. 2017;43(1):34-55.

81. Kaleeswaran S, Tulsian V, Kanade A, Orso A. Minthint: automated synthesis of repair hints. In: Proceedings of the 36th International Conference on

Software Engineering. New York, NY, USA: ACM; 2014:266-276.

82. Tao Y, Kim J, Kim S, Xu C. Automatically generated patches as debugging aids: a human study. In: Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering>. Hong Kong: ACM; 2014:64-74.

83. Bissyandé TF. Harvesting fix hints in the history of bugs. arXiv preprint arXiv:150705742; 2015.

84. Nistor A, Chang P-C, Radoi C, Lu S. Caramel: detecting and fixing performance problems that have non-intrusive fixes. In: Proceedings of the 37th

International Conference on Software Engineering, Vol. 1. Florence, Italy: IEEE; 2015:902-912.

85. Monperrus M. A critical review of automatic patch generation learned from human-written patches: essay on the problem statement and the

evaluation of automatic software repair. In: Proceedings of the 36th International Conference on Software Engineering. New York, NY, USA: ACM;

2014:234-242.

86. Barr ET, Brun Y, Devanbu P, Harman M, Sarro F. The plastic surgery hypothesis. In: Proceedings of the 22nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering. New York: ACM; 2014:306-317.

https://pmd.github.io/
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1109/TSE.2018.2884955

LI ET AL. 25 of 25

87. Long F, Rinard M. An analysis of the search spaces for generate and validate patch generation systems. In: Proceedings of the 38th International

Conference on Software Engineering. Austin, TX, USA: IEEE; 2016:702-713.

88. Smith EK, Barr ET, Le Goues C, Brun Y. Is the cure worse than the disease? Overfitting in automated program repair. In: Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering. New York, NY, USA: ACM; 2015:532-543.

89. Le Goues C, Holtschulte N, Smith EK, et al. The ManyBugs and IntroClass benchmarks for automated repair of C programs. IEEE Trans Softw Eng.

2015;41(12):1236-1256.

90. Just R, Jalali D, Ernst MD. Defects4j: a database of existing faults to enable controlled testing studies for java programs. In: Proceedings of the 2014

International Symposium on Software Testing and Analysis. New York, NY, USA: ACM; 2014:437-440.

91. Martinez M, Durieux T, Sommerard R, Xuan J, Monperrus M. Automatic repair of real bugs in java: a large-scale experiment on the defects4j dataset.

Empir Softw Eng. 2017;22(4):1936-1964.

92. Liu K, Koyuncu A, Kim D, Bissyandé TF. TBar: revisiting template-based automated program repair. arXiv:190308409 [cs]; March 2019.

93. Śliwerski J, Zimmermann T, Zeller A. HATARI: raising risk awareness. In: Proceedings of the 10th European Software Engineering Conference Held

Jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering. New York, NY, USA: ACM; 2005:107-110.

94. Kim S, Zimmermann T, Pan K, Whitehead EJ. Automatic identification of bug-introducing changes. In: 21st IEEE/ACM International Conference on

Automated Software Engineering, 2006. ASE '06; 2006; Tokyo, Japan:81-90.

95. Kim S, Zimmermann T, Whitehead Jr. EJ, Zeller A. Predicting faults from cached history. In: Proceedings of the 29th International Conference on

Software Engineering. Washington, DC, USA: IEEE Computer Society; 2007:489-498.

96. Shivaji S, Whitehead Jr. EJ, Akella R, Kim S. Reducing features to improve bug prediction. In: Proceedings of the 2009 IEEE/ACM International

Conference on Automated Software Engineering. Washington, DC, USA: IEEE Computer Society; 2009:600-604.

97. Jiang T, Tan L, Kim S. Personalized defect prediction. In: 2013 IEEE/ACM 28th International Conference on Automated Software Engineering (ASE);

2013; Silicon Valley, CA, USA:279-289.

98. Bird C, Bachmann A, Aune E, et al. Fair and balanced?: bias in bug-fix datasets. In: Proceedings of the the 7th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering. New York, NY, USA: ACM; 2009:121-130.

99. Hong Q, Kim S, Cheung SC, Bird C. Understanding a developer social network and its evolution. In: 2011 27th IEEE International Conference on

Software Maintenance (ICSM); 2011; Williamsburg, VI, USA:323-332.

100. Onoue S, Hata H, Matsumoto K-I. A study of the characteristics of developers' activities in GitHub. In: 2013 20th Asia-Pacific Software engineering

conference (APSEC); 2013; Bangkok, Thailand: 7-12.

101. Pham R, Singer L, Liskin O, Figueira Filho F, Schneider K. Creating a shared understanding of testing culture on a social coding site. In: Proceedings

of the 2013 International Conference on Software Engineering. Piscataway, NJ, USA: IEEE Press; 2013:112-121.

How to cite this article: Li D, Li L, Kim D, Bissyandé TF, Lo D, Le Traon Y. Watch out for this commit! A study of influential software

changes. J Softw Evol Proc. 2019;e2181. https://doi.org/10.1002/smr.2181

https://doi.org/10.1002/smr.2181

	Watch out for this commit! A study of influential software changes
	Abstract
	INTRODUCTION
	Definition scoping for influential changes
	Study research questions
	Terminology
	This study

	MOTIVATING EXAMPLES
	Collateral evolution
	Feature replacement
	Revolutionary feature
	Fixes of controversial/popular issues

	POST-MORTEM ANALYSIS FOR ICs
	Data collection
	Systematic analysis
	Changes that address controversial/popular issues
	Anomalies in change behaviors
	Changes referred to in other changes

	Manual validation on a sample set
	Developer validation

	LEARNING TO CLASSIFY ICs
	Machine learning features for ICs
	Structural features
	Natural language terms in commit messages
	Co-change impact

	Influential change classification
	Experiment setup
	Assessment results
	Generalization of influential change features
	Evaluation summary

	LIMITATIONS and THREATS TO VALIDITY
	RELATED WORK
	Software evolution
	Change impact analysis
	Change pattern mining
	Program repair
	Defect prediction
	Developer expertise

	CONCLUSION AND FUTURE WORK
	References

