
Bench4BL: Reproducibility Study on the Performance of
IR-Based Bug Localization

Jaekwon Lee
SnT, University of Luxembourg

Luxembourg
jaekwon.lee@uni.lu

Dongsun Kim
SnT, University of Luxembourg

Luxembourg
dongsun.kim@uni.lu

Tegawendé F. Bissyandé
SnT, University of Luxembourg

Luxembourg
tegawende.bissyande@uni.lu

Woosung Jung
Seoul National University of

Education
Seoul, South Korea
wsjung@snue.ac.kr

Yves Le Traon
SnT, University of Luxembourg

Luxembourg
Yves.LeTraon@uni.lu

ABSTRACT
In recent years, the use of Information Retrieval (IR) techniques
to automate the localization of buggy files, given a bug report,
has shown promising results. The abundance of approaches in
the literature, however, contrasts with the reality of IR-based bug
localization (IRBL) adoption by developers (or even by the research
community to complement other research approaches). Presumably,
this situation is due to the lack of comprehensive evaluations for
state-of-the-art approaches which offer insights into the actual
performance of the techniques.

We report on a comprehensive reproduction study of six state-
of-the-art IRBL techniques. This study applies not only subjects
used in existing studies (old subjects) but also 46 new subjects
(61,431 Java files and 9,459 bug reports) to the IRBL techniques.
In addition, the study compares two different version matching
(between bug reports and source code files) strategies to highlight
our observations related to performance deterioration. We also vary
test file inclusion to investigate the effectiveness of IRBL techniques
on test files, or its noise impact on performance. Finally, we assess
potential performance gain if duplicate bug reports are leveraged.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Empirical software validation; Software evolution;
Maintaining software;

KEYWORDS
Reproducibility studies, bug localization, information retrieval

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213856

ACM Reference Format:
Jaekwon Lee, DongsunKim, Tegawendé F. Bissyandé,Woosung Jung, and Yves
Le Traon. 2018. Bench4BL: Reproducibility Study on the Performance of IR-
Based Bug Localization. In Proceedings of 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA’18). ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3213846.3213856

1 INTRODUCTION
In software development and maintenance, debugging constitutes
one of the most costly activities [5, 42, 50]. To alleviate debugging
costs, the research community is striving to produce approaches
and tools for automating various tasks. Among these tasks, bug
localization [16, 25, 34, 35], i.e., the process of locating program
elements which contain bugs leading to abnormal behavior, is a
well-studied field. Bug localization leverages information such as
issue reports [4] and stack traces describing a bug and its symptom,
as well as possible reproduction steps, to identify which source
code files, classes, functions, or code chunks are relevant to the bug.

The literature of bug localization proposes several approaches
which leverage Information Retrieval (IR) techniques [7, 9, 15, 27,
28, 38] to identify potential bug locations by processing textual bug
reports and source code files. Such approaches produce a ranked
list of files where highly ranked files are supposed to be most likely
to contain the reported bug. As Parnin and Orso pointed out, based
on a developer survey, developers are strongly sensitive to the
performance of such debugging tools: they do not find the tool
useful when it does not help pinpoint the root cause of the bug
early in the output ranked list [33].

State-of-the-art IR-based bug localization (IRBL) approaches are
reported in the literature with increasingly high accuracy scores.
Nevertheless, their benchmarking has not yet reached the level of
maturity that is now required in several other sub-fields of software
engineering. Our work contributes towards this maturity by (1)
exploring a comprehensive evaluation of existing techniques with
new large-scale datasets, (2) performing a reproducibility study on
the performance of state-of-the-art techniques, and (3) investigat-
ing potential directions for improving IRBL performance (e.g., by
matching the version of a bug report with source code files, assess-
ing the impact of test file inclusion, or applying IRBL on duplicate
bug reports).

61

https://doi.org/10.1145/3213846.3213856
https://doi.org/10.1145/3213846.3213856

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon

Overall, this paper makes the following contributions:
• A Reproducibility study with new subjects: We examine
potential overfitting scenarios by investigating the difference
in performance when applied to the limited set of common
(old) subjects used by most studies [37, 44–46, 52, 53] in the
literature, and when applied to new subjects.
• An Empirical Assessment of the impact of IRBL exe-
cution configurations: Our study varies several different
execution strategies of IRBL techniques to show the perfor-
mance of the techniques in different evaluation environments
such as version matching strategies and test file inclusion.
• A Comprehensive benchmark for bug localization: Fi-
nally, we package our datasets and detailed reproduction
study results of state-of-the-art approaches into a new bench-
mark, Bench4BL1.

Our findings include:
(1) The performance of IRBL techniques is actually higher than

what is reported in the literature. We further show that ex-
periments in the literature are also flawed since they were
often performed on out-of-sync versions of the source code.

(2) While the differences in performance among the state-of-the-
art techniques become less apparent with our large dataset,
there is a high variability of performance across projects.

(3) In contrast to the common belief of the community [45],
excluding test files is not necessary for the evaluation of IRBL
techniques.

(4) Merging duplicate reports may achieve the performance gain.
(5) There is still room to improve the performance of IRBL.
The remainder of this paper is organized as follows. After explain-

ing the background of IR-based bug localization and the motivation
of this paper in Section 2, we describe the design of our study in
Section 3. Section 4 illustrates, interprets the study results, and
provides take-away messages for prospective users and researchers
of IRBL. Section 5 discusses additional issues. After surveying the
related work in Section 6, we conclude with directions for future
research in Section 7.

2 BACKGROUND & MOTIVATION
Bug/Fault localization is a software maintenance activity in which
a maintainer examines symptom information submitted by users,
or obtained by running test cases, to locate suspicious resources
(e.g., source code, configuration or data files) in a project. There are
two leading research directions on bug (fault) localization, namely
spectrum-based fault localization [1, 2, 10, 47] and IR-based bug
localization [37, 44–46, 52, 53]. In the former, probable locations of
faults are identified by computing ranking metrics, generally based
on similarity coefficients and statistical techniques, on succeeding
and failing test execution traces. In the latter, on the other hand,
approaches only leverage source code information and bug report
text to identify suspicious files using IR techniques such as Latent
Dirichlet Allocation (e.g., [25]), Vector Space Model (e.g., [53]),
Latent Semantic Analysis (e.g., [8]), Clustering (e.g., [24]).

IRBL techniques [37, 44, 46, 52, 53] are commonly known to
exhibit low cost and to be scalable in practice since they require

1https://github.com/exatoa/Bench4BL

static information and, besides the bug report and the source code,
they have no other external dependencies. The basic intuition for
adopting IR technique for bug localization is that bug reports and
project resources share common words. In other words, we can
regard that a certain source file is suspicious if it contains words also
written in a given bug report. According to the survey of feature
location studies [13], IRBL is one of the tasks to locate feature
locations; its type of analysis is ‘textual’, the input is a natural
language query, the data source is source code, and the output is a
subset of source code files in a project.

2.1 Performance Metrics
When evaluating IRBL techniques, many studies first collect ground
truth data, which consist of bug reports already fixed by developers
and the corresponding change set (i.e., files changed to fix a bug).
Then, they apply the IRBL technique on this dataset and compare
output results against the ground truth. The followings are common
metrics used in most studies to assess an approach’s performance:
• Precision: Also more accurately referred to as Precision@k, this
metric represents an estimation of how many files are correctly
recommended within given top k files. It is computed as follows:

P (k) =
of buggy files in top k

k
(1)

• Recall: Also more accurately referred to as Recall@k, this metric
estimates how many files are correctly recommended within
given top k files over the actually fixed files by a developer for a
given bug report. It is computed as follows:

R(k) =
of buggy files in top k
of actually fixed files

(2)

• Average Precision (AP): The average precision of a given bug
report aggregates precision values of several positively recom-
mended files as:

AP =
N∑
i=1

P (i) · pos(i)
of positive instances

(3)

where N is the number of ranked files by an IRBL technique,
i is a rank in the ranked list of recommended files. pos(i) indi-
cates whether the i-th file in the ranked list is a buggy file (i.e.,
pos(i) ∈ {0, 1}). For example, AP = 0.5, for a bug report with
k actually fixed files, implies that an IRBL technique can make
correct recommendations with 50% of probability within top k
recommendations.
• Mean Average Precision (MAP): The MAP is computed by
taking the mean value of AP values across all bug reports:

MAP =
1
M

M∑
j=1

AP (j) (4)

whereM is the number of all reports. AP(j) is the average preci-
sion of report j. If MAP=pmap , at least one file is likely to be a
correct recommendation for every 1

pmap
files in the ranked list.

• Mean Reciprocal Rank (MRR): This measure computes the
mean value of the position of the first buggy file in the ranked
list recommended by an IRBL technique, following this equation:

MRR =
1
M

M∑
i=1

1
f -ranki

(5)

where M is the number of all bug reports and f -ranki means
the position of the first buggy file in the ranked list for the i-th

62

Bench4BL: Reproducibility Study on the Performance of IR-Based Bug Localization ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

bug report. For example, assuming MRR = 0.5, an IRBL tech-
nique can locate at least one correct file to fix within top two
recommendations (i.e., 1

MRR =
1
0.5 = 2).

2.2 Motivation
We motivate this work as a contribution to the community for
boosting the research on IR-based bug localization. We have indeed
identified two key issues with the current state of research in IRBL,
which justify a thorough reproducibility study for understanding
which techniques indeed perform well and how the performance
of such techniques can be realistically improved:
Performance of IRBL techniques is not solidly established: IRBL
research has produced a number of state-of-the-art approaches in
recent years. Unfortunately, performance assessments often focused
on the same old and limited set of projects (such as old versions of
JDT, AspectJ, etc.). Wen et al. [45] have also raised several threats
to validity on the recorded performance: there could be some over-
fitting in the models due to some subject selection bias; and given
the limited datasets, the data could be of poor quality to draw con-
clusions in the sense that they may not include interesting bug
cases.
There are few perspectives on how to improve existing tech-
niques:Most approaches in the literature focus on tuning the al-
gorithms to gain fractions of precision performance points. In this
work, we attempt to show that there is more room to demonstrate
or improve the performance of techniques by consolidating the
input data. For example, we investigate the consistency of project
version with the bug report when applying IRBL techniques since
bug reports indeed reflect the functioning of the program at a given
time. We also examine whether including test files when identifying
buggy files would help bug localization with IRBL techniques. In
addition, duplicate bug reports may help us identify which features
in bug reports are effective for IRBL techniques.

3 STUDY DESIGN
Our reproduction study explores different experimental scenarios
to address the following research questions:

• RQ1: To what extent do IRBL techniques perform on up-
to-date subjects?
• RQ2: What is the impact of version matching on the per-
formance of IRBL techniques?
• RQ3: To what extent are IRBL techniques sensitive to the
inclusion of test code files?
• RQ4: What potential performance gain can be reached by
leveraging duplicate bug reports?

The objective of RQ1 is to (1) reproduce the results of IRBL
techniques with the outdated subjects from the literature and (2)
produce another set of results of the techniques with larger and
recent subjects collected from active projects. With these two ob-
jectives, we can eventually establish whether some performance
results recorded in the literature were actually over-fitted to a spe-
cific set of subjects.

Throughout RQ2 and RQ3, we investigate how IRBL techniques
perform under different execution settings. Our study first (RQ2)
compares two different version matching strategies: (1) assuming
that an IRBL technique identifies files in a single version of the target

program for all bug reports and (2) each bug report corresponds
to a specific version of the program. Second (RQ3), we give two
different search spaces to IRBL techniques: source code files with
and without test files.

RQ4 aims at estimating the usefulness of duplicate reports for
IRBL. Since duplicate reports contain different descriptions for a
single bug, they could help improve performance.

To answer these research questions, we selected IRBL techniques
whose implementations were readily available and usable (cf. Sec-
tion 3.1). We then collected data from a large and diversified set of
open source projects (cf. Sections 3.2 and 3.3); the dataset is pub-
licly available at Bench4BL (https://github.com/exatoa/Bench4BL).
In Sections 3.4 and 3.5, we define execution strategies for IRBL
techniques to evaluate them in various configurations.

3.1 IRBL Techniques
We identified six recent state-of-the-art techniques that target Java
projects:

• (2012) - BugLocator [53] leverages similar bug reports
that have been previously fixed and relies on revised Vector
Space Model (rVSM) for the recommendation.
• (2013) - BLUiR [37] extracts code entities such as classes,
methods, and variable names from bug reports and lever-
ages them to localize files.
• (2014) - BRTracer [46] analyzes stack traces shown in bug
reports to improve bug localization accuracy.
• (2014) -AmaLgam [44] utilizes revision history in addition
to similar reports and code entities.
• (2015) - BLIA [52] combines information such as similar
reports, revision history, code entities, and stack trace in-
formation all together to improve the performance of IRBL.
• (2016) - Locus [45], the most recent technique, leverages
code change information.

We select the above six techniques because they are frequently
adopted to perform comparative studies against each other. Locus is
one of the most recent techniques and its evaluation compares with
BRTracer, BLUiR, and AmaLgam. The work of BLIA compares its
performance with BugLocator, BLUiR, BRTracer, and AmaLgam. In
the work of AmaLgam, the authors evaluated its performance com-
paring with BugLocator and BLUiR. The performance of BRTracer
and BLUiR are compared with BugLocator in their work.

Default parameters:We use the default parameters in the lit-
erature by the approach authors for their assessment experiments.
As recent IR-based studies [12, 32] pointed out, configuration and
parameters of each IRBL technique might have a significant impact
on the performance of bug localization. Since our goal is to repro-
duce the techniques and their results without any modification, we
use the same configuration and parameters specified in each paper.
If there are multiple configurations or parameters are available, we
take the best one that was reported to outperform other settings.
We provide more details in Section 6 for these techniques.

Specifically, we leverage the following configurations and pa-
rameters. For BugLocator, our setup includes the use of the revised
Vector Space Model (rVSM), similar bug reports, the weighting fac-
tor α (for similar reports) of 0.3, and a logistic function as the length
function. In case of BLUiR, we utilize TFIDF with term frequency

63

https://github.com/exatoa/Bench4BL

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon

parameter k1 = 1.0 and document scaling factor b = 0.3, select the
Krovetz stemmer, enable exact identifier name indexing and code
structure modeling, and leverage similar bug reports. The execution
setup for BRTracer leverages rVSM and similar bug reports. For
AmaLgam, we use the same setup with BugLocator since the tech-
nique is based on BugLocator. This technique takes two additional
parameters: version history length k = 15 and composer compo-
nent ratio b = 0.3 by default. In case of BLIA, its configuration uses
rVSM and three control parameters α = β = 0.2, k = 30 by default
as specified in [52]. For Locus, we use VSM and control parameter
λ = 0.5 by default. Refer to the corresponding papers of the six
techniques for more details of each parameter.

In addition, we run the above six techniques with the following
environment: the machine that has an eight-core with 3.6GHz Intel
processors and 16GB memory, and the 64-bit Ubuntu 16.04.

3.2 Subjects and Data Extraction
The first part of Table 1 lists 46 open source projects, denoted as
new subjects collected for our study and which are (1) written in
Java, (2) with publicly available bug reports, and (3) having at least
20 source code files in one of its version. We applied these criteria
to the projects of Apache2, Spring3, and JBoss4; we selected those
software communities since they are the largest ones with projects
written by Java and well-managed together with issue tracking
systems such as Jira5.

In addition, we consider projects commonly used in the literature
of IRBL [37, 44, 46, 52, 53] as listed in the second part of Table 1 as
old subjects. Since the previous studies have used slightly different
data sets from each other, we collect the union set of reports and
source files as long as those data are available. Note that we have
collected bug reports and source code files for Eclipse JDT and
PDE instead of Eclipse itself since the repository of Eclipse is now
separately managed for each sub-project [45]. Although additional
benchmarks are available in [11, 14], we focus on existing subjects
widely-used in IRBL studies.

In accordance with the settings of previous studies [37, 44–46, 52,
53], we collect only source code files (i.e., ∗.java files) from each
subject. As shown in Table 1, 61,431 files are collected from 46 new
subjects and 19,475 files from five old subjects. Note that the number
of files is computed for the version with the maximum number of
source files for each subject: the actual number of files could be
different for each specific version (cf. Section 3.4 for multi-version
collection details).

For each subject in Table 1, we collect bug reports from the corre-
sponding issue tracking systems (ITS). Among all reports available
in an ITS, we only select bug reports that are explicitly classified
as “Bug” by developers and marked as FIXED with explicit file
changes, yielding 9,459 reports from the 46 new subjects and 558
reports from the five old subjects. From each collected bug report,
we extract information only available when it initially submitted,
i.e., summary (or title), description, and reporter. We leave out extra
information such as comments.

2Apache, http://www.apache.org/
3Spring, https://spring.io/
4JBoss, http://www.jboss.org/
5Jira, https://www.atlassian.com/jira

Table 1: Projects used in our study.

Group Subject # Source # Major # Bug # Duplicate
files (Max) versions reports reports
New subjects

Apache

CAMEL 14,522 60 1,469 50
HBASE 2,714 70 836 80
HIVE 4,651 21 1,241 270
CODEC 115 9 42 2

COLLECTIONS 525 7 92 16
COMPRESS 254 15 113 9

CONFIGURATION 447 11 133 4
CRYPTO 82 1 8 0
CSV 29 3 14 0
IO 227 13 91 7

LANG 305 16 217 23
MATH 1,617 15 245 8

WEAVER 113 1 2 0

JBoss

ENTESB 252 3 47 1
JBMETA 858 5 26 1
ELY 68 3 25 1

SWARM 727 6 58 1
WFARQ 126 1 1 0
WFCORE 3,598 16 361 8
WFLY 8,990 11 984 27
WFMP 80 1 3 0

Spring

AMQP 408 33 108 3
ANDROID 305 2 11 0
BATCH 1,732 33 432 3

BATCHADM 243 4 20 0
DATACMNS 604 33 158 15
DATAGRAPH 848 4 60 2
DATAJPA 330 38 147 11

DATAMONGO 622 40 271 19
DATAREDIS 551 17 49 1
DATAREST 414 23 132 12

LDAP 566 5 53 1
MOBILE 64 3 11 0
ROO 1,109 15 714 72
SEC 1,618 42 541 68

SECOAUTH 726 7 101 0
SGF 695 19 107 1
SHDP 1,102 9 45 0
SHL 151 3 11 1

SOCIAL 212 4 15 0
SOCIALFB 253 5 15 0
SOCIALLI 180 1 4 0
SOCIALTW 153 5 8 0

SPR 6,512 12 130 73
SWF 808 20 134 5
SWS 925 25 174 12

Sub-total 61,431 690 9,459 807
Old subjects

Old
subjects

AspectJ 6,485 1 286 35
JDT 6,842 1 94 24
PDE 5,273 1 60 20
SWT 484 1 98 57
ZXing 391 1 20 -

Sub-total 19,475 5 558 136
Total 80,906 695 10,017 943

Duplicate bug reports: We searched the ITS for duplicate bug
reports of all bug reports. Relationships between master bug reports
(i.e., those marked as fixed) and duplicate bug reports are 1 ← n
(i.e., individual duplicate reports point to one master report inde-
pendently). In some cases, the relationships are transitive: master
report (M) ← first duplicate (D1) ← second duplicate (D2). We
regard them as a group of duplicate reports for the master report
and dealt with as pairs of <M, D∗ >. Note that we cannot collect
duplicate bug reports for ZXing as shown in Table 1 because its
ITS for old reports is no longer available.

In this work, to avoid introducing bias related to data quality, we
do not leverage any of the advanced approaches [17, 36, 40, 41] to
detect duplicate reports. Instead, we use the link explicitly specified
in each bug report. This method may miss potential duplicate bug

64

http://www.apache.org/
https://spring.io/
http://www.jboss.org/
https://www.atlassian.com/jira

Bench4BL: Reproducibility Study on the Performance of IR-Based Bug Localization ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

reports but there might be no false positives. Overall, we collected
807 duplicate report pairs6 for the new subjects and 136 pairs for
the old subjects. Note that duplicate reports often are not attached
with fixed files since those reports tend to be classified as duplicates
before linking source files to change. Thus, we assume, when using
for our experiments, those duplicate reports have the same set of
files that the master reports have changed to fix the bugs.

3.3 Bug Linking
To build experimental ground truth we must link every fixed bug
report with the associated files where the fix is performed. The
correct link information is crucial for evaluating bug localization
techniques since the techniques rely on the link information in
their performance evaluation. The researchers of most IRBL studies
also collected the link information between bug reports and source
code commits to evaluate the techniques.

(a) Example of link information
(commit ID of a project repository)
shown in a bug report.

(b) Example of link information
(bug report ID of an issue track-
ing system) shown in a commit log
message.

Figure 1: Examples of two bug linking methods.

Although there exist other more advanced approaches to bug
linking (e.g., ReLink [49], MLink [31], and RCLinker [21]), we do
not consider them to avoid their performance limitations [6]. Wu
et al. [49] reported relatively high precision results for half of the
subjects, but their technique showed lower precision (0.682–0.858)
for another half. Although MLink [31] achieved a higher precision
than ReLink, its evaluation was performed a limited number/size of
subjects. This limitation is also discussed in [21] with an evaluation
of additional subjects; its precision values are ranged from 0.3 to
0.785 (average: 0.564). RCLinker [21] achieves 0.509 precision on
average. Due to the low precision, we cannot adopt the bug linking
techniques in our study. The six IRBL techniques used in our study
did not leverage the above approaches to avoid many false positives.

In this study, we only use explicit links in bug reports and com-
mit log messages since our goal is to avoid false positives (a link
between a report and file but they are not actually relevant) and
to allow false negatives (missing links). Developers often put link
information in bug reports and commit logs to keep track of bugs
and corresponding source code changes [20]. They use explicit IDs
to identify bug reports and code commits. Figure 1a shows an ex-
ample of a commit ID recorded in a bug report. Most issue tracking
systems provide a feature to explicitly designate commit ID (with a
hyperlink). In case of commit logs, developers manually write bug
report ID in its message in a specific format as shown in Figure 1b.

We extracted link information in bug reports, which is explicitly
provided by an issue tracking system. The subjects listed in Table 1
are all managed by Jira. Thus, we collected bug reports written in
6The number of pairs and duplicate reports are different since some duplicate reports
can be grouped by a master report as explained in Section 3.2.

Jira’s format and we identified commit IDs after parsing them. If
a bug report contains a designated commit ID, we link the source
code files (in this study, “*.java” files) to the bug report. When
multiple commit IDs are recorded in a single bug report, we use
the latest commit ID to link source code files.

When identifying bug report IDs in a commit log, we use a
regular expression. Bug report IDs of the subjects are often recorded
in a format of “PROJECT-###”, which can be detected by a regular
expression. If there are multiple IDs, we use the first occurrence as
the bug report to link source code files in the commit.

3.4 Version Matching
Bug reports are submitted by users in reference to specific project
versions. In most cases, the target version of the bug is the most
recently released version at the time of submission. When attempt-
ing to localize potential buggy files relevant to a given bug report,
it is necessary to clearly define a search space of the project files. If
version information is not correctly specified, the result of a bug
localization technique becomes useless.

In this study, we apply two different strategies of version match-
ing: single version matching vs. multiple version matching. In the
single version matching strategy, a bug localization technique as-
sumes that the search space of potential source code files is the
latest version of a software project as shown in Figure 2a. This strat-
egy makes the search space simple. Thus, most bug localization
studies have used this strategy in their evaluation. The work of the
six techniques adopted in this study also used this strategy in their
own evaluation. With multiple version matching, a bug localization
technique constructs a set of files of the version specified in a bug
report as the search space. Thus, different bug reports correspond
to different sets of source code files as shown in Figure 2b.

(a) Single version matching strategy.

(b) Multiple version matching strategy.
Figure 2: Two versionmatching strategies used in this study.

Since previous studies did not implement multiple version match-
ing, we perform the following procedure to determine which ver-
sion corresponds to each report: (1) we collect all tagged version
releases for each subject, then (2) we check, for each bug report,
that it specifies the release version(s) that are concerned by this
bug. When several versions are listed, we consider the oldest one.
If there is no version specified in a bug report, we ignore the re-
port. Note that the numbers in “# Bug reports” in Table 1 indicate
the number of bug reports with explicit version information. For
old subjects, version matching is not applied since many major

65

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon

releases associated with reports used in previous studies are no
longer available.

3.5 Test File Inclusion
This study uses two different strategies for search space construc-
tion: (1) with test code files and (2) without test files. Most IRBL
techniques select the first strategy; a bug localization technique
scans all source code files (e.g., “∗.java”) in a target project to create
a search space. Among the six techniques adopted in this study,
only Locus [45] does not include test code files. The technique ex-
cludes test code files since the authors assumed that test files are
not the target of bug localization. Specifically, the authors stated
that the inclusion of test files may cause bias or noise since some
test files contain specific bug identifiers and they are created after
the bug is fixed. Note that this situation happens only when using
single version matching.

To prepare the search space without test code files, we use the fol-
lowing procedure: (1) filter out files if its path contains “. . . /test/. . . ”
or “. . . /tests/. . . ”, and (2) exclude source code files if its file name
ends with “. . .Test.java”. Although this procedure may cause false
positives (i.e., non-test files can be excluded) or false negatives (i.e.,
test files can remain in the search space), most projects in the sub-
jects listed in Table 1 follow the path and file naming rules and the
above procedure can be effective.

4 ANALYSIS RESULTS
4.1 Baseline Performance
We apply each considered IRBL technique to every subject listed
in Table 1, and check the output ranked list of source code files
identified as potential bug locations against the collected ground
truth dataset previously collected from the subjects. As described in
Section 3.1, we use the default parameters specified in the original
work of the six IRBL techniques.

●●

●●

0.359

0.35

0.359

0.365

0.363

0.38Locus

BLIA

AmaLgam

BLUiR

BRTracer

BugLocator

0.00 0.25 0.50 0.75 1.00
(a) MAP.

0.455

0.501

0.43

0.516

0.497

0.506Locus

BLIA

AmaLgam

BLUiR

BRTracer

BugLocator

0.00 0.25 0.50 0.75 1.00
(b) MRR.

Figure 3: Distribution of MAP/MRR values of subjects for
each technique: All (old/new) subjects listed in Table 1 with
single version matching and test files included.

Note that the performance values shown in Figure 3 aremeasured
with the following setting: (1) all subjects (old + new) listed in
Table 1, (2) single version matching strategy, and (3) including test

code files. This setting is similar to the configurations used in the
evaluation of the six techniques described in Section 3.1 (cf., Locus
does not include test files by default).

We measured the performance (MAP and MRR) by applying
each IRBL technique to each subject. Figure 3 shows the overall
distributions of MAP and MRR for each technique. MAP values of
all techniques are ranged from 0 to 1. While BLUiR and AmaLgam
have higher outliers, BLIA has the best top value (0.774 of the
IO subject). The average values are 0.37, 0.39, 0.37, 0.38, 0.36, and
0.36, respectively (in sequence of BugLocator, BRTracer, BLUiR,
AmaLgam, BLIA, and Locus). MRR (Figure 3b) values are also ranged
from 0 to 1. The average values are 0.50, 0.52, 0.47, 0.48, 0.49, and 0.47,
respectively (with the same sequence of MAP’s average values).

In spite of small differences observed above, none of the six
techniques substantially outperforms the others, all presenting a
tight range of MAP and MRR values; the median values of MAP
and MRR are ranged as 0.350 – 0.380 and 0.430 – 0.516, respectively.

From the perspective of practice, users of IRBL techniques can
expect a similar performance by using any of the six techniques. Al-
though each technique yields better performance for some projects
(MAP: 0.6 — 0.75 and MRR: 0.75 – 1.0), it is not feasible to figure
out whether an IRBL technique works better for a specific project
without a prior knowledge. This encourages to characterize project
characteristics and investigate the sensitivity of IRBL techniques
on the characteristics.

In addition, the overall MAP and MRR values suggest that the
field of IR-based bug localization still has much room for improve-
ment from the research perspective. Despite recent efforts in bug
localization, 35 – 50% precision and recall values (even for file-
level) might not acceptable to practitioners. Further investigation
should include (1) the characteristics of those projects for which the
IRBL techniques ineffectively perform, (2) the acceptable level of
performance to users, and (3) effective granularity of localization.
On the need for a further analysis

There are no significant differences, in terms of performance,
among the six investigated IRBL techniques. A thorough anal-
ysis of the limitations can reveal various opportunities for re-
search directions for improving the state-of-the-art.

4.2 RQ1: Subject Groups
To compare the performance of the techniques between old and new
subject groups, we compute MAP and MRR values for each subject.
Our results are summarized in two different ways: (1) Table 2 sum-
marizes the results of each technique assuming all the bug reports
are aggregated into a single (virtual) project and (2) Table 3 shows
individual performance values each pair of project and technique.
In the single virtual evaluation setting, we compute MAP and MRR
values assuming all bug reports are in a single project. In the latter
setting, the values are computed by each project. Therefore, the
average MAP/MRR values in Table 3 are different from the values
in Table 2. In Table 2, we use Mann-Whitney U test [26] to find out
whether the differences are significant. This statistical test is also
used for comparing the average of the following experiments. In Ta-
ble 3, the highest MAP and MRR values for each subject across the

66

Bench4BL: Reproducibility Study on the Performance of IR-Based Bug Localization ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

six techniques are highlighted by background color and bold-face
font.
Table 2: Summary of MAP/MRR of IRBL techniques for old
and new subjects in Table 1 (aggregated results with single
version matching and test files included).

Technique Old (Single Ver.) New (Single Ver.)
MAP MRR MAP MRR

BugLocator 0.2692 0.3985 ↗ 0.3052∗∗ ↗ 0.4223∗∗
BRTracer 0.2645 0.3664 ↗ 0.3330∗∗ ↗ 0.4690∗∗
BLUiR 0.3102 0.4556 ↘ 0.2881∗∗ ↘ 0.3869

AmaLgam 0.2950 0.4072 ↘ 0.2906∗∗ ↘ 0.3899∗∗
BLIA 0.2935 0.4242 ↗ 0.3014∗∗ ↘ 0.4155∗∗
Locus 0.2641 0.3399 ↗ 0.3289∗∗ ↗ 0.4430∗∗

∗: p-value < 0.05, ∗∗: p-value < 0.01,↗: increased,↘: decreased

Note that we use the single version matching strategy (see Sec-
tion 3.4) and include test code files in the search space (see Sec-
tion 3.5) in this experiment for RQ1. These experiment strategies
are common to the original studies of six IRBL techniques we used
in our study except for Locus [45]. This setting might be vulnerable
to recommending files that did not exist when a given bug report
was submitted.

As shown in Table 2, the six techniques differently perform be-
tween old and new subjects at the level of bug reports. In cases of
BLUiR and AmaLgam, both MAP and MRR values for new subjects
are lower than those of old subjects. BLIA’s MRR is also lower for
new subjects than those of old subjects. For other cases, MAP/MRR
values are higher for new subjects. BLUiR shows the best MAP/MRR
on average for old subjects while BRTracer achieves the highest
MAP/MRR values on average for new subjects for project-level per-
formance (see Table 3). Locus yields the best MAP for 17 individual
projects (16 of new and one of old) and BRTracer takes the top MRR
values for 21 (20 of new and one of old) individual projects.

Note that the MAP/MRR values for old subjects in Table 3 are
different from the values reported in each of the six techniques. The
differences might be caused by (1) different number of bug reports
and (2) different configuration such as version matching and test
file inclusion. The studies of the six techniques have used different
numbers of reports even for the same subject. While most of the
previous studies adopted single version matching, each study has
used different versions of each subject for evaluation; this can be
another reason for the different results.

The results imply that IRBL techniques are actually not overfit-
ted to old subjects. While the previous studies tend to (re-)use the
same outdated subjects, we find that the community should turn
to up-to-date subjects to describe the performance that developers
could find relevant.

One of the potential reasons of better performance of the new
subjects is that developers tend to write source code more with user
languages; Our conjecture is that the developers of recent projects
may use user-friendly words for identifiers in source code. Thus,
token distributions of both bug reports and source code could be
more similar.
On the use of old vs. new subjects

IRBL techniques generally yield better performance on recent
subjects. To estimate the actual performance that is reached
by state-of-the-art approaches, we recommend that researchers
should use up-to-date subjects.

Table 3: MAP/MRR for each subject listed in Table 1 (project-
wise results with single version matching and test files in-
cluded).

Subject BugLocator BRTracer BLUiR AmaLgam BLIA Locus
MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

New subjects
CAMEL 0.3235 0.4621 0.3646 0.5270 0.3005 0.4188 0.3032 0.4210 0.3097 0.4451 0.3986 0.5571
HBASE 0.2993 0.4168 0.3463 0.4884 0.2818 0.3938 0.2820 0.3942 0.3094 0.4258 0.3084 0.4059
HIVE 0.2693 0.3670 0.3178 0.4521 0.2769 0.3914 0.2772 0.3916 0.2412 0.3312 0.3310 0.4580
CODEC 0.6227 0.8341 0.6333 0.8199 0.7011 0.8625 0.7011 0.8625 0.6914 0.8829 0.3519 0.4087

COLLECTIONS 0.2318 0.3327 0.2319 0.3457 0.2174 0.2659 0.2191 0.2659 0.2493 0.3606 0.2670 0.3090
COMPRESS 0.5637 0.7545 0.5747 0.7976 0.4874 0.6382 0.4816 0.6345 0.5797 0.7822 0.5872 0.7801

CONFIGURATION 0.0378 0.0480 0.0385 0.0530 0.0413 0.0502 0.0413 0.0502 0.0345 0.0476 0.0299 0.0430
CRYPTO 0.1622 0.2665 0.1711 0.3044 0.1982 0.3974 0.1982 0.3974 0.1588 0.3616 0.1118 0.3421

IO 0.7640 0.8574 0.7508 0.8809 0.6797 0.7332 0.6784 0.7309 0.7744 0.8489 0.4053 0.4322
LANG 0.5371 0.6446 0.5426 0.6441 0.5327 0.5783 0.5367 0.5810 0.5349 0.6423 0.5810 0.6181
MATH 0.1563 0.2173 0.1586 0.2274 0.1952 0.2413 0.2122 0.2627 0.1765 0.2394 0.1895 0.2251

WEAVER 0.6212 0.6666 0.6331 0.7500 0.6637 0.6666 0.6637 0.6666 0.5695 0.6666 0.4996 0.5500
CSV 0.6104 0.6677 0.6108 0.6784 0.6075 0.6369 0.6313 0.6845 0.4048 0.6429 0.6554 0.6970

ENTESB 0.0559 0.0511 0.0542 0.0624 0.0652 0.0775 0.0652 0.0775 0.0314 0.0638 0.0555 0.0704
JBMETA 0.2442 0.4387 0.2351 0.4312 0.1805 0.3233 0.1832 0.3258 0.2078 0.3698 0.2534 0.3639
ELY 0.0587 0.1506 0.0668 0.1587 0.1098 0.1962 0.1098 0.1962 0.0939 0.1667 0.1260 0.1667

WFARQ 0.5000 0.5000 0.3333 0.3333 1.0000 1.0000 1.0000 1.0000 0.1111 0.1111 0.5000 0.5000
WFCORE 0.3202 0.4444 0.3326 0.4687 0.2552 0.3392 0.2565 0.3402 0.2830 0.3834 0.3607 0.4607
WFLY 0.2283 0.3196 0.2572 0.3623 0.2099 0.2972 0.2104 0.2982 0.2118 0.2994 0.2562 0.3500
WFMP 0.4534 0.5833 0.2675 0.2398 0.6818 0.8333 0.6818 0.8333 0.5000 0.6667 0.6226 0.7778
SWARM 0.2936 0.3852 0.3326 0.4317 0.3412 0.3960 0.3412 0.3960 0.2708 0.3608 0.2651 0.3656
AMQP 0.4426 0.6205 0.4775 0.6754 0.4196 0.5691 0.4210 0.5694 0.4626 0.6661 0.4533 0.6229

ANDROID 0.3626 0.5121 0.3536 0.5904 0.3761 0.4747 0.3761 0.4747 0.3138 0.5076 0.0796 0.0698
BATCH 0.3186 0.4848 0.3284 0.5023 0.2805 0.3941 0.2933 0.4124 0.3158 0.4735 0.3664 0.5449

BATCHADM 0.3218 0.4325 0.3479 0.5011 0.3657 0.4806 0.3657 0.4806 0.4313 0.5724 0.4322 0.6252
DATACMNS 0.4565 0.5916 0.4683 0.6429 0.4581 0.5632 0.4581 0.5632 0.5133 0.6670 0.5244 0.6482
DATAGRAPH 0.1519 0.2384 0.1592 0.2497 0.1714 0.2788 0.1718 0.2788 0.1426 0.2577 0.1609 0.2578
DATAJPA 0.4822 0.6649 0.4892 0.6854 0.4769 0.6170 0.4767 0.6170 0.5311 0.7098 0.4769 0.6329

DATAMONGO 0.4582 0.6344 0.5095 0.6965 0.4519 0.5769 0.4519 0.5769 0.5212 0.6807 0.4861 0.6322
DATAREDIS 0.5353 0.7627 0.5561 0.8081 0.5801 0.7626 0.5813 0.7637 0.5717 0.8082 0.4999 0.7259
DATAREST 0.3492 0.5458 0.3939 0.6372 0.3550 0.5125 0.3584 0.5162 0.3651 0.5730 0.3802 0.5974

LDAP 0.4401 0.6344 0.4875 0.7197 0.4681 0.6251 0.4681 0.6251 0.4824 0.6665 0.3857 0.5058
MOBILE 0.6909 0.8864 0.7116 0.9545 0.9224 1.0000 0.9224 1.0000 0.7285 0.8939 0.5042 0.5862
ROO 0.1164 0.1628 0.1293 0.1821 0.0910 0.1283 0.0928 0.1297 0.1001 0.1422 0.1208 0.1811
SEC 0.3209 0.4237 0.3368 0.4438 0.3087 0.3736 0.3133 0.3788 0.3502 0.4496 0.3145 0.3857

SECOAUTH 0.1983 0.3659 0.2128 0.3965 0.1381 0.2620 0.1430 0.2714 0.1891 0.3522 0.1990 0.3683
SGF 0.4173 0.6546 0.4223 0.6850 0.3591 0.5973 0.3589 0.5970 0.3682 0.6174 0.4359 0.7245
SHDP 0.4433 0.6279 0.4652 0.6734 0.3899 0.5184 0.3897 0.5184 0.4654 0.6222 0.4633 0.5826
SHL 0.2533 0.4037 0.2621 0.4166 0.2827 0.4220 0.2828 0.4221 0.2836 0.4015 0.3251 0.4579

SOCIAL 0.6110 0.6937 0.5900 0.6726 0.1979 0.2245 0.2496 0.3000 0.5285 0.5689 0.6569 0.7029
SOCIALFB 0.5541 0.6416 0.6156 0.7401 0.4818 0.6167 0.4818 0.6167 0.4064 0.5301 0.5382 0.6929
SOCIALLI 0.4711 0.6250 0.6384 0.7083 0.3929 0.3958 0.4504 0.4166 0.2989 0.3208 0.4081 0.6875
SOCIALTW 0.7382 0.7937 0.6750 0.7292 0.3814 0.4271 0.5014 0.5833 0.5594 0.6188 0.5456 0.6250

SPR 0.3074 0.4684 0.3377 0.5165 0.2061 0.3284 0.2182 0.3386 0.2878 0.4319 0.0169 0.0241
SWF 0.3812 0.4758 0.3974 0.5060 0.3647 0.4579 0.3613 0.4548 0.4038 0.5015 0.4384 0.5502
SWS 0.4002 0.5400 0.4211 0.5872 0.3811 0.4886 0.3811 0.4886 0.3969 0.5456 0.4177 0.5680

Average 0.3821 0.5064 0.3922 0.5299 0.3767 0.4746 0.3836 0.4827 0.3644 0.4930 0.3649 0.4757
Old subjects

AspectJ 0.2148 0.3857 0.1428 0.2587 0.2250 0.4161 0.2023 0.3382 0.2505 0.4185 0.1605 0.2186
ZXing 0.3306 0.3837 0.4598 0.5626 0.3937 0.4219 0.4596 0.5626 0.4984 0.5752 0.4358 0.5274
PDE 0.3757 0.4971 0.3330 0.4304 0.3884 0.5382 0.3334 0.4308 0.3376 0.4714 0.3711 0.5236
JDT 0.1697 0.2699 0.2491 0.3382 0.2774 0.3832 0.2491 0.3382 0.1742 0.2310 0.3594 0.4542
SWT 0.4458 0.5016 0.5528 0.6286 0.5257 0.5967 0.5528 0.6284 0.4639 0.5666 0.3303 0.3812

Average 0.3073 0.4076 0.3475 0.4437 0.3620 0.4712 0.3594 0.4596 0.3449 0.4525 0.3314 0.4210

For each subject, the highest MAP andMRR values are highlighted by blue (n.nnnn) and green (n.nnnn)
background, respectively, with bold-face font.

4.3 RQ2: Impact of Matching Bug Report with
Code Version

We utilize the version matching strategies described in Section 3.4
to investigate the importance of using a consistent code version
with regards to a given bug report in order to accurately locate
buggy files. We applied version matching only to new subjects,
unfortunately, due to the limited availability of version releases in
old subjects.

Table 4 provides the summarized results for two different strate-
gies: single and multiple version matching. All six IRBL techniques
show higher MAP and MRR values when applying multiple version
matching. The performance improvements are even statistically
significant for all techniques. The improvement of MAP is ranged
from 0.0661 (BugLocator) to 0.0928 (Locus) and that of MRR is from
0.0836 (BRTracer) to 0.1084 (Locus).

67

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon

Table 4: Summary of comparison between single vs. multi-
ple versionmatching strategies (aggregated results with test
files included).

Technique New (Single Ver.) New (Multiple Ver.)
MAP MRR MAP MRR

BugLocator 0.3052 0.4223 ↗ 0.3713∗∗ ↗ 0.5075∗∗
BRTracer 0.3330 0.4690 ↗ 0.3992∗∗ ↗ 0.5526∗∗
BLUiR 0.2881 0.3869 ↗ 0.3623∗∗ ↗ 0.4802∗∗

AmaLgam 0.2906 0.3899 ↗ 0.3657∗∗ ↗ 0.4840∗∗
BLIA 0.3014 0.4155 ↗ 0.3777∗∗ ↗ 0.5124∗∗
Locus 0.3289 0.4430 ↗ 0.4217∗∗ ↗ 0.5514∗∗

∗: p-value < 0.05, ∗∗: p-value < 0.01,↗: increased,↘: decreased

Table 5 shows project-wise performance results after applying
version matching. Compared to Table 3, Locus shows the best MAP
on average (0.4368) and takes the highest MAP for the most number
(=24) of projects. BRTracer yields the highest MRR values for the
most number (=13) of projects and the best average MRR value all
over the projects.

The results can be interpreted in different ways. First, single
version matching often makes the search space larger than an
actual version corresponding to a target report since the matching
strategy uses the latest version as the search space; Developers
tend to add more files rather than removing them as a program is
updated. Second, target files can be missing in the latest version.
Since some files can be removed from a project after revisions, the
target files that IRBL techniques need to identify might be missing
in the latest version when using single version matching.

The results of this study imply that the evaluation/execution of
IRBL techniques should apply multiple version matching. Existing
studies have evaluated their techniques by using single version
matching because it makes the evaluation simpler. However, this
degrades the achievement of the IRBL techniques. In addition to
the effect of evaluation, multiple version matching is actually close
to the real application setting.
On the importance of version matching

Our experiments have shown thatwhenmatching the bug report
with its code version, IRBL techniques are most effective. IRBL
techniques should consider exploiting version metadata from
bug report and select appropriate code base for attempting to
localize the bug.

4.4 RQ3: Test File Inclusion
This section reports the performance differences between two strate-
gies of test file inclusion. Following the procedure of identifying test
code files described in Section 3.5, we filter out test files from both
of the search space and a set of target files that IRBL techniques
need to find. Then, we run each IRBL techniques on the subjects
with the multiple version matching strategy. The aggregated re-
sults of MAP/MRR are summarized in Table 6 while project-wise
performance is listed in Table 8.

As shown in Table 6, excluding test code files results in a negative
effect on the overall performance of IRBL techniques. For a half
(BugLocator, BRTracer, and BLIA) of the techniques, it slightly
improved MAP (by 0.098, 0.149, and 0.125, respectively) while the
values are decreased for another half (BLUiR, AmaLgam, and Locus)
by -0.02, -0.024, and -0.071, respectively. The test exclusion strategy

Table 5: MAP/MRRwithmultiple versionmatching (project-
wise results with test files included).

Subject BugLocator BRTracer BLUiR AmaLgam BLIA Locus
MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

New subjects
CAMEL 0.3585 0.5058 0.3960 0.5641 0.3487 0.4775 0.3525 0.4824 0.3479 0.4857 0.4277 0.5900
HBASE 0.3626 0.4999 0.4004 0.5548 0.3533 0.4891 0.3531 0.4890 0.3823 0.5219 0.4322 0.5809
HIVE 0.3048 0.4140 0.3517 0.4870 0.3177 0.4402 0.3181 0.4403 0.2888 0.3884 0.3546 0.4822
CODEC 0.6390 0.8483 0.6237 0.7942 0.7488 0.9028 0.7488 0.9028 0.6734 0.8710 0.7516 0.9286

COLLECTIONS 0.4443 0.6312 0.5236 0.6998 0.4057 0.4713 0.4057 0.4713 0.5692 0.7288 0.6602 0.7637
COMPRESS 0.5414 0.7377 0.5484 0.7692 0.4839 0.6249 0.4794 0.6207 0.5791 0.7961 0.6109 0.7985

CONFIGURATION 0.5174 0.7164 0.5103 0.7376 0.5063 0.6234 0.5143 0.6289 0.5750 0.7776 0.6095 0.7379
CRYPTO 0.1628 0.2665 0.1708 0.3044 0.1982 0.3974 0.1982 0.3974 0.1588 0.3616 0.1118 0.3421

IO 0.7110 0.8214 0.7152 0.8570 0.6694 0.7103 0.6693 0.7101 0.7629 0.8548 0.7943 0.8459
LANG 0.5576 0.6749 0.5648 0.6771 0.5674 0.6197 0.5714 0.6221 0.5988 0.7193 0.6737 0.7143
MATH 0.4227 0.5704 0.4459 0.6304 0.4834 0.6058 0.4965 0.6209 0.4696 0.6351 0.4756 0.5776

WEAVER 0.6212 0.6666 0.6331 0.7500 0.6637 0.6666 0.6637 0.6666 0.5695 0.6666 0.3580 0.2917
CSV 0.6017 0.6672 0.5813 0.6448 0.6052 0.6369 0.6290 0.6845 0.3750 0.5357 0.6554 0.6970

ENTESB 0.0999 0.1131 0.0875 0.1189 0.0949 0.1212 0.1546 0.1919 0.0539 0.0944 0.1178 0.1587
JBMETA 0.2272 0.4005 0.2332 0.4057 0.1685 0.2940 0.1706 0.2960 0.2078 0.3673 0.2717 0.3977
ELY 0.0625 0.1540 0.0673 0.1587 0.1098 0.1962 0.1098 0.1962 0.0939 0.1667 0.1270 0.1733

WFARQ 0.5000 0.5000 0.3333 0.3333 1.0000 1.0000 1.0000 1.0000 0.1111 0.1111 0.5000 0.5000
WFCORE 0.3225 0.4407 0.3353 0.4658 0.2693 0.3566 0.2706 0.3578 0.2826 0.3943 0.3633 0.4603
WFLY 0.3036 0.4174 0.3337 0.4614 0.2698 0.3751 0.2706 0.3762 0.2624 0.3694 0.3542 0.4753
WFMP 0.4534 0.5833 0.2675 0.2398 0.8485 1.0000 0.8485 1.0000 0.5000 0.6667 0.6226 0.7778
SWARM 0.2857 0.3510 0.2967 0.3949 0.2778 0.3392 0.2778 0.3392 0.2522 0.3426 0.2849 0.4013
AMQP 0.4136 0.6288 0.4369 0.6608 0.4275 0.6049 0.4306 0.6064 0.4532 0.6806 0.4864 0.6591

ANDROID 0.4016 0.6582 0.3238 0.5907 0.3421 0.4444 0.3421 0.4444 0.3195 0.5091 0.5405 0.6593
BATCH 0.3535 0.5379 0.3685 0.5643 0.3738 0.5251 0.3808 0.5311 0.3845 0.5674 0.4234 0.5969

BATCHADM 0.3825 0.4831 0.4095 0.5678 0.3898 0.5017 0.3898 0.5017 0.4602 0.5990 0.4513 0.6002
DATACMNS 0.3649 0.5258 0.3766 0.5634 0.3631 0.4880 0.3630 0.4880 0.4319 0.6064 0.4692 0.5865
DATAGRAPH 0.0396 0.0676 0.0494 0.0999 0.0352 0.0618 0.0352 0.0618 0.0465 0.0877 0.0667 0.1422
DATAJPA 0.4022 0.5631 0.4150 0.6125 0.4221 0.5795 0.4236 0.5800 0.4816 0.6824 0.4106 0.5413

DATAMONGO 0.4106 0.5815 0.4412 0.6218 0.4111 0.5456 0.4111 0.5456 0.4724 0.6487 0.4747 0.6173
DATAREDIS 0.5255 0.7505 0.5478 0.8000 0.5523 0.7557 0.5559 0.7593 0.5571 0.7689 0.4904 0.7043
DATAREST 0.3377 0.5431 0.3600 0.5781 0.3297 0.5005 0.3335 0.5043 0.3511 0.5657 0.3094 0.4889

LDAP 0.4697 0.6441 0.5394 0.7521 0.5017 0.6390 0.5017 0.6390 0.4948 0.6490 0.3821 0.4901
MOBILE 0.6697 0.8864 0.7057 0.9545 0.9264 1.0000 0.9264 1.0000 0.7316 0.8939 0.4519 0.5732
ROO 0.4111 0.5179 0.4436 0.5646 0.3874 0.4906 0.3970 0.5000 0.4168 0.5230 0.4019 0.4957
SEC 0.4606 0.5855 0.4822 0.6185 0.4421 0.5249 0.4480 0.5332 0.5188 0.6514 0.5126 0.6024

SECOAUTH 0.3300 0.4525 0.3233 0.4410 0.2975 0.3825 0.3100 0.4011 0.3153 0.4480 0.3244 0.4591
SGF 0.3876 0.6179 0.3717 0.6112 0.3899 0.5986 0.3898 0.5985 0.3808 0.6000 0.3542 0.5972
SHDP 0.4127 0.5859 0.4433 0.6302 0.3500 0.4682 0.3500 0.4682 0.4341 0.5799 0.4501 0.5774
SHL 0.2802 0.4554 0.2363 0.4226 0.3238 0.4791 0.3239 0.4792 0.3160 0.5152 0.2100 0.2907

SOCIAL 0.6108 0.6608 0.6237 0.6733 0.4422 0.5092 0.4342 0.4764 0.5916 0.6667 0.6633 0.7029
SOCIALFB 0.6040 0.6744 0.6194 0.7400 0.5003 0.5874 0.4804 0.5930 0.4610 0.5103 0.5418 0.6595
SOCIALLI 0.4711 0.6250 0.6384 0.7083 0.3929 0.3958 0.4504 0.4166 0.2989 0.3208 0.4081 0.6875
SOCIALTW 0.4917 0.6198 0.4941 0.6875 0.5789 0.6667 0.6622 0.7917 0.3115 0.4479 0.5456 0.6250

SPR 0.3372 0.5056 0.3708 0.5441 0.2380 0.3930 0.2483 0.4009 0.2985 0.4347 0.3573 0.5203
SWF 0.3708 0.4828 0.3912 0.5208 0.3706 0.4808 0.3739 0.4830 0.3916 0.5027 0.4415 0.5452
SWS 0.3515 0.4761 0.3504 0.4904 0.3391 0.4558 0.3391 0.4558 0.3579 0.5017 0.3661 0.4870

Average 0.4085 0.4085 0.4170 0.4170 0.4243 0.4243 0.4305 0.4305 0.3998 0.3998 0.4368 0.4368

For each subject, the highest MAP andMRR values are highlighted by blue (n.nnnn) and green (n.nnnn)
background, respectively, with bold-face font.

constantly makes a negative effect for MRR of all IRBL techniques,
ranged from -0.0396 to -0.0512.

Project-wise results (Table 8) also show the performance degra-
dation. While Locus achieves the best MAP on average in the pre-
vious experiment (see Table 5), BRTracer shows the best MAP and
MRR values on average as shown in Table 8. The number of best-
performing projects is also decreased for Locus (in case of MAP,
from 24 to 16 projects).
Table 6: Summary of comparison between test file inclusion
strategies (aggregated results with multiple version match-
ing).

Technique Test files included Test files excluded
MAP MRR MAP MRR

BugLocator 0.3713 0.5075 ↗ 0.3811∗∗ ↘ 0.4647∗∗
BRTracer 0.3992 0.5526 ↗ 0.4141 ↘ 0.5090∗∗
BLUiR 0.3623 0.4802 ↘ 0.3603∗∗ ↘ 0.4385∗∗

AmaLgam 0.3657 0.4840 ↘ 0.3633∗∗ ↘ 0.4420∗∗
BLIA 0.3777 0.5124 ↗ 0.3902∗ ↘ 0.4728∗∗
Locus 0.4217 0.5514 ↘ 0.4146∗∗ ↘ 0.5002∗∗

∗: p-value < 0.05, ∗∗: p-value < 0.01,↗: increased,↘: decreased

There might be several reasons for the above results. First, test
code files would contain many common words written in bug re-
ports. It is a common conjecture that a smaller search space would
produce better recommendation results (e.g., excluding test files).

68

Bench4BL: Reproducibility Study on the Performance of IR-Based Bug Localization ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

However, it turns out that test files can be ranked in higher places
and may help bug localization even though they can make the
search space larger. This indicates that test files contain many to-
kens appearing in bug reports. Second, more vulnerable files are
tested more. Developers tend to write test cases earlier and to
change frequently if a file is vulnerable to bugs. Thus, test files for
the file would contain tokens well-describing some specific symp-
toms and causes; IRBL techniques can identify them easily. Third,
some test files include test cases of multiple classes and methods.
This might happen when developers write a monolithic test code.
Thus, it is necessary to change the test files for any bug is fixed.

Test code files should be included in the search space of IRBL
techniques. Those files may contain more text tokens relevant to
the user’s perspective (i.e., tokens in bug reports) than other code
files. Since test files are eventually connected to production files,
including test files would help the bug localization process. Note
that the evaluation of Locus filtered out test files [45] since they
assumed that those test files can cause bias and noise in the results
of their tool. The bias is also related to the versionmatching strategy
as the single version matching strategy can result in the inclusion
of files created after a bug is reported. However, including test files
does not interfere bug localization if it is with multiple (and correct)
version matching. In fact, it slightly improves the performance of
IRBL techniques.
On the impact of test file inclusion

With a correct version matching strategy, including test files
does not make bias or noise in the evaluation of IRBL techniques.

Table 7: Performance with/without duplicate reports.

Tool Master Duplicate Master + Duplicate
MAP MRR MAP MRR MAP MRR

BugLocator 0.3503 0.5051 ↘ 0.3259 ↘ 0.4667 ↘ 0.3502 ↗ 0.5249
BRTracer 0.3852 0.5508 ↘ 0.3776 ↘ 0.5430 ↘ 0.3787 ↗ 0.5692
BLUiR 0.3159 0.4540 ↘ 0.2804∗ ↘ 0.4192∗ ↗ 0.3325 ↗ 0.4728

AmaLgam 0.3202 0.4581 ↘ 0.2829∗∗ ↘ 0.4223∗ ↗ 0.3327 ↗ 0.4725
BLIA 0.3518 0.4915 ↘ 0.3231∗ ↘ 0.4537 ↗ 0.3577 ↗ 0.5041
Locus 0.2915 0.4707 ↘ 0.2871 ↗ 0.4724 ↗ 0.3042 ↗ 0.5021

∗: p-value < 0.05, ∗∗: p-value < 0.01,↗: increased,↘: decreased

4.5 RQ4: Potential Contribution of Duplicate
Bug Reports

Considering collected < M,D > pairs (cf. Section 3.2) in our sub-
jects, we compute MAP and MRR values of three sets of reports:
(1) master reports of < M,D > pairs, (2) duplicate reports of the
pairs, and (3) master+duplicate reports (M+D) by applying IRBL
techniques. To build M+D, we concatenate the text of master and
duplicate reports in sequence for each pair.

Table 7 shows the results. Note that the performance results in
the first column (forMaster) are different from overall performance
found initially for fixed bug reports (cf. Table 2) because, in this
experiment, we only consider master reports that have duplicates.

All six IRBL techniques produced less MAP and MRR values
for master or duplicate reports than when combining master and
duplicate reports. As shown in the rightmost column in Table 7,
MAP and MRR values are increased except for MAP of BugLocator
and BRTracer. The difference of MAP and MRR are ranged from
-0.007 to +0.017 and +0.013 to +0.031, respectively, although the
differences are not statistically significant. This finding is consistent

Table 8: MAP/MRR after excluding test files from the search
space (project-wise results withmultiple versionmatching).

Subject BugLocator BRTracer BLUiR AmaLgam BLIA Locus
MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

New subjects
CAMEL 0.3706 0.4658 0.4158 0.5280 0.3682 0.4511 0.3716 0.4550 0.3665 0.4566 0.4501 0.5524
HBASE 0.3453 0.4433 0.3796 0.4918 0.3303 0.4284 0.3299 0.4280 0.3561 0.4576 0.3952 0.5025
HIVE 0.2893 0.3848 0.3365 0.4548 0.3050 0.4098 0.3054 0.4095 0.2775 0.3627 0.3432 0.4497
CODEC 0.7060 0.8230 0.6704 0.7554 0.7030 0.8016 0.7030 0.8016 0.7019 0.8241 0.6820 0.7935

COLLECTIONS 0.5846 0.6296 0.6437 0.6933 0.4278 0.4581 0.4278 0.4581 0.6614 0.7252 0.6790 0.7208
COMPRESS 0.6432 0.7165 0.6685 0.7561 0.5751 0.6139 0.5702 0.6097 0.7054 0.7871 0.6916 0.7693

CONFIGURATION 0.6369 0.6846 0.6576 0.7088 0.5032 0.5433 0.5116 0.5498 0.6934 0.7558 0.5511 0.5911
CRYPTO 0.1610 0.2639 0.1692 0.3021 0.1950 0.3911 0.1950 0.3911 0.1545 0.2951 0.0847 0.1059

IO 0.7757 0.7917 0.7944 0.8316 0.6577 0.6680 0.6576 0.6678 0.7994 0.8274 0.7299 0.7550
LANG 0.5998 0.6154 0.6099 0.6225 0.5506 0.5601 0.5504 0.5580 0.6713 0.6898 0.5870 0.6050
MATH 0.4127 0.4851 0.4631 0.5416 0.4649 0.5289 0.4746 0.5410 0.4833 0.5558 0.3968 0.4508

WEAVER 0.4091 0.4166 0.4404 0.3750 0.5328 0.6666 0.5328 0.6666 0.6041 0.6666 0.2757 0.2917
CSV 0.6142 0.6434 0.5740 0.6032 0.5714 0.5952 0.5714 0.5952 0.5000 0.5357 0.6381 0.6596

ENTESB 0.0412 0.0515 0.0234 0.0309 0.0477 0.0548 0.1080 0.1256 0.0118 0.0301 0.0559 0.0748
JBMETA 0.2237 0.3508 0.2360 0.3570 0.1759 0.2499 0.1770 0.2510 0.2111 0.3153 0.2520 0.3530
ELY 0.0625 0.1540 0.0673 0.1587 0.1098 0.1962 0.1098 0.1962 0.0939 0.1667 0.1270 0.1733

WFARQ 0.5000 0.5000 0.3333 0.3333 1.0000 1.0000 1.0000 1.0000 0.1111 0.1111 0.5000 0.5000
WFCORE 0.3004 0.3888 0.3155 0.4107 0.2533 0.3176 0.2544 0.3187 0.2591 0.3368 0.3482 0.4256
WFLY 0.2653 0.3483 0.2967 0.3877 0.2481 0.3303 0.2515 0.3360 0.2295 0.3040 0.3175 0.4080
WFMP 0.4534 0.5833 0.2675 0.2398 0.8485 1.0000 0.8485 1.0000 0.5000 0.6667 0.6226 0.7778
SWARM 0.2437 0.2996 0.2923 0.3741 0.2631 0.3082 0.2631 0.3082 0.2363 0.3189 0.2678 0.3590
AMQP 0.4818 0.5751 0.5121 0.6005 0.4876 0.5549 0.4906 0.5564 0.5153 0.6064 0.4973 0.5745

ANDROID 0.3634 0.4612 0.2811 0.3462 0.2751 0.2883 0.2751 0.2883 0.3634 0.4221 0.4926 0.4775
BATCH 0.4013 0.4837 0.4299 0.5188 0.3784 0.4572 0.3804 0.4610 0.4239 0.5159 0.4293 0.5286

BATCHADM 0.4241 0.4589 0.4586 0.5081 0.3518 0.4170 0.3518 0.4170 0.4987 0.5614 0.5091 0.5913
DATACMNS 0.4218 0.4937 0.4538 0.5287 0.3720 0.4367 0.3719 0.4367 0.4954 0.5692 0.4850 0.5396
DATAGRAPH 0.0342 0.0503 0.0481 0.0853 0.0298 0.0429 0.0298 0.0429 0.0456 0.0681 0.0562 0.1198
DATAJPA 0.4544 0.5216 0.4807 0.5644 0.4364 0.5080 0.4378 0.5102 0.5385 0.6331 0.4230 0.4890

DATAMONGO 0.4391 0.4965 0.4805 0.5379 0.3992 0.4553 0.3992 0.4553 0.4869 0.5545 0.4799 0.5341
DATAREDIS 0.6440 0.7356 0.6769 0.7873 0.6583 0.7503 0.6619 0.7539 0.6558 0.7439 0.5936 0.6823
DATAREST 0.4022 0.5184 0.4297 0.5534 0.3643 0.4627 0.3620 0.4596 0.4438 0.5562 0.3466 0.4521

LDAP 0.5044 0.5782 0.5702 0.6780 0.4908 0.5644 0.4908 0.5644 0.5128 0.6149 0.4069 0.4520
MOBILE 0.4622 0.5411 0.5455 0.6369 0.6136 0.6727 0.6136 0.6727 0.4811 0.5379 0.3750 0.4218
ROO 0.4030 0.5049 0.4360 0.5530 0.3784 0.4787 0.3886 0.4882 0.4085 0.5103 0.3968 0.4870
SEC 0.5175 0.5726 0.5431 0.6049 0.4448 0.4900 0.4505 0.4978 0.5720 0.6333 0.5313 0.5793

SECOAUTH 0.3438 0.4115 0.3417 0.4078 0.2974 0.3495 0.3013 0.3543 0.3525 0.4292 0.3586 0.4362
SGF 0.4242 0.5794 0.4146 0.5642 0.3895 0.5283 0.3894 0.5282 0.4038 0.5571 0.3663 0.5358
SHDP 0.4172 0.5264 0.4556 0.5570 0.3337 0.4146 0.3337 0.4146 0.4252 0.5131 0.4688 0.5246
SHL 0.3157 0.4493 0.2802 0.4183 0.3389 0.4756 0.3390 0.4757 0.3864 0.5152 0.2034 0.2800

SOCIAL 0.6363 0.6608 0.6459 0.6733 0.4732 0.5092 0.4571 0.4764 0.6156 0.6667 0.6807 0.7029
SOCIALFB 0.6002 0.6744 0.6662 0.7400 0.5031 0.5274 0.4882 0.5330 0.4586 0.4743 0.5106 0.5374
SOCIALLI 0.4330 0.5000 0.5457 0.5833 0.2629 0.2708 0.3059 0.2916 0.2270 0.2375 0.4717 0.6250
SOCIALTW 0.5323 0.5698 0.5804 0.5804 0.5580 0.5833 0.6518 0.7083 0.3787 0.3854 0.5729 0.5833

SPR 0.3203 0.4230 0.3532 0.4529 0.2505 0.3425 0.2594 0.3504 0.2913 0.3760 0.3471 0.4415
SWF 0.3988 0.4576 0.4263 0.4932 0.3924 0.4565 0.3943 0.4586 0.4273 0.4854 0.4498 0.5153
SWS 0.3782 0.4641 0.3899 0.4849 0.3732 0.4458 0.3732 0.4458 0.4139 0.5011 0.3863 0.4700

Average 0.4216 0.4216 0.4370 0.4370 0.4127 0.4127 0.4176 0.4176 0.4228 0.4228 0.4312 0.4312

For each subject, the highest MAP andMRR values are highlighted by blue (n.nnnn) and green (n.nnnn)
background, respectively, with bold-face font.

with the general study of Bettenburg et al. [3], which reported that
duplicate bug reports often provide useful information (on average
40%more than master reports). On the other hand, we observe cases
where duplicate reports actually yield degraded performances (with
BLUiR and AmaLgam) where differences with master reports are
statistically significant.
On leveraging duplicate bugs reports

We have found that, in general, reports tagged as duplicate are
less relevant for localizing buggy files than the associated master
report. Nevertheless, duplicate reports bring along additional
tokenswhich can complementmaster bug reports and guarantee
a minimum level of performance.

5 DISCUSSION
5.1 Execution Time
In practice, IRBL technique adoption is not only influenced by
the performance that it can deliver but also the execution time.
We measure the execution time of each technique for each subject.
Table 9 shows a summary of the execution time of the six techniques;
the result of each technique is the aggregated value of all versions

69

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon

Table 9: Execution time (minutes) for the tools.
Technique Min Max Median Mean Total
BugLocator 1 70 10 15 702
BRTracer 1 71 10 15 710
BLUiR 1 209 9 22 1,034

AmaLgam 1 217 9 24 1,095
BLIA 1 208 12 21 944
Locus 1 9,636 13 373 17,163

in the subject. Note that AmaLgam’s execution time is computed
by adding BLUiR’s time and AmaLgam’s pure execution time since
AmaLgam uses the results of BLUiR.

BugLocator and BRTracer need less time (15 min on average) to
execute than the rest. BLUiR, AmaLgam, and BLIA took slightly
more time (22, 24, and 21 min on average, respectively) than the
first two techniques. Running Locus requires significantly more
time (373 min on average). Based on our inspection, the original
implementation of Locus has a performance issue due to text con-
catenation in the middle of its execution. We fixed the issue and con-
firmed that it can significantly improve the performance. However,
we do not report here since the goal of this study is to reproduce
the results of the original implementations.

Overall, for all six techniques, the execution time is proportional
to the number of bug reports in a subject. BLUiR’s analysis time is
higher than BugLocator and BRTracer due to its use of Indri [39],
an open source IR toolkit, which accounts for most of the execution
time. Considering revision history incurs more overhead for AmaL-
gam, BLIA, and Locus. The low runtime performance of Locus is
mainly due to change hunk scanning as the technique leverages
hunk-level change information even for file-level bug localization.

5.2 Threats to Validity
External validity: Our study examines only Java subjects as listed
in Table 1. However, the same process in the study can be applied
to other subjects implemented by another programming language.
Another threat to the validity of our study is that our subjects are
all based on an open source development model. The practice in
the software industry may involve projects with specific charac-
teristics that may be even more suitable (or in contrast unsuitable)
for IRBL techniques. The provided replication package should help
practitioners validate IRBL techniques in their context.
Internal validity: We use the Mann-Whitney U test [26] to ex-
amine statistical significance. This method may, however, present
limitations. Nevertheless, the methods are commonly used in the
literature to figure out the significance.

6 RELATEDWORK
Bug localization techniques. Topic modeling and semantic anal-
ysis are common techniques used in IRBL. PROMESIR [34] utilizes
Latent Semantic Analysis (LSI) [9] to identify buggy files. Lukins et
al. [25] adopted Latent Dirichlet Allocation (LDA) [7] to their ap-
proach that models source code topics and showed its effectiveness
with a small number of case studies. BugScout [30], on the other
hand, builds topic models for both source code and bug reports and
compares their distribution to locate files to fix a bug.

Stack traces are regarded as a promising information source
in bug localization. Wong et al. proposed a BRTracer [46] which
further considers stack traces in similarity scores. Lobster [29] also

uses stack traces to compare with code elements in source code
files. CrashLocator [48] focuses more on stack traces together with
function call graphs.

Other IRBL techniques consider machine learning. Ye et al. [51]
proposed a learning-to-rank approach to bug localization based
features representing the degree of suspiciousness. Kim et al. [18]
dealt with bug report quality to improve bug localization with a
two-phase model focusing on high-quality bug reports.

IRBL-related studies. Closely related to our work, Le et al. [22,
23] have proposed a study where they attempt to predict whether
the ranked list produced by a bug localization tool is likely to be rel-
evant to the given bug. They extract various textual and metadata
features from 3 old projects and test on two IRBL techniques. They
indeed find that it is possible, to some extent, to predict the effective-
ness of the considered techniques. Our work is a generalized and
large-scale investigation into the question of IRBL performance.

Wang et al. [43] have conducted an analytical study and a user
study on IRBL techniques to assess their usefulness. Focusing on
a single technique, BugLocator, and four common projects from
previous studies, they report that the information needed for IR-
based techniques to be effective is often not available in bug reports.

7 CONCLUSION
We presented a comprehensive reproducibility analysis of state-of-
the-art IR-based bug localization techniques as a contribution to
the community towards (1) demonstrating the actual performance
of current approaches, (2) providing an updated benchmark for
furthering this research field, and (3) showing the performance
variations of different evaluation strategies.

Our reproducibility study have yielded several findings for the
practice and research around bug localization. Overall, while IRBL
approaches exhibit similar performance scores, subjects are not all
equivalently adapted for each technique. All techniques are not
overfitted to outdated subjects and perform better for up-to-date
subjects as well. In contrast to the common belief, including test
cases does not degrade the performance and, rather, even improves
localization results. In addition, we reveal a potential research di-
rection that leveraging duplicate reports together would enhance
the performance of IRBL techniques.

Our future work will include (1) investigating relationships be-
tween project/report/file characteristics and the performance of
different IRBL techniques (cf. D&C approach [19]), (2) building a
decision model that predicts which IRBL technique performs better
than others for a given project of file, and (3) improving preprocess-
ing steps of IRBL techniques to reduce noise.

We provide a replication package with datasets and scripts as
Bench4BL, at https://github.com/exatoa/Bench4BL

ACKNOWLEDGEMENTS
This work was supported by the Fonds National de la Recherche
(FNR), Luxembourg, under projects RECOMMENDC15/IS/10449467,
FIXPATTERN C15/IS/9964569. This work was also supported by
the National Research Foundation of Korea (NRF) grant funded by
the Korea government (Ministry of Science, ICT & Future Planning)
(No. 2015R1C1A1A01054994).

70

https://github.com/exatoa/Bench4BL

Bench4BL: Reproducibility Study on the Performance of IR-Based Bug Localization ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. 2007. On the Accuracy of

Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION, 2007. TAICPART-MUTATION 2007.
89 –98.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2006. An Evaluation
of Similarity Coefficients for Software Fault Localization. In 12th Pacific Rim
International Symposium on Dependable Computing, 2006. PRDC ’06. IEEE, 39–46.

[3] N. Bettenburg, R. Premraj, T. Zimmermann, and Sunghun Kim. 2008. Duplicate
bug reports considered harmful . . . really?. In IEEE International Conference on
Software Maintenance, ICSM 2008. IEEE, 337–345.

[4] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillère, J. Klein, and Y. L. Traon. 2013.
Got issues? Who cares about it? A large scale investigation of issue trackers
from GitHub. In 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE). 188–197.

[5] Tegawendé F Bissyandé, Laurent Réveillère, Julia L Lawall, and Gilles Muller.
2012. Diagnosys: automatic generation of a debugging interface to the linux
kernel. In Automated Software Engineering (ASE), 2012 Proceedings of the 27th
IEEE/ACM International Conference on. IEEE, 60–69.

[6] Tegawendé F Bissyandé, Ferdian Thung, Shaowei Wang, David Lo, Lingxiao
Jiang, and Laurent Reveillere. 2013. Empirical evaluation of bug linking. In 17th
European Conference on Software Maintenance and Reengineering (CSMR). IEEE,
89–98.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet
allocation. Journal of Machine Learning Research 3 (March 2003), 993–1022.

[8] Brendan Cleary, Chris Exton, Jim Buckley, and Michael English. 2009. An em-
pirical analysis of information retrieval based concept location techniques in
software comprehension. Empirical Software Engineering 14, 1 (01 Feb 2009),
93–130.

[9] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and
Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American Society for Information Science 41, 6 (Sept. 1990), 391–407.

[10] Nicholas DiGiuseppe and James A. Jones. 2014. Fault density, fault types, and
spectra-based fault localization. Empirical Software Engineering 20, 4 (March
2014), 928–967.

[11] B. Dit, A. Holtzhauer, D. Poshyvanyk, and H. Kagdi. 2013. A dataset from change
history to support evaluation of software maintenance tasks. In 2013 10thWorking
Conference on Mining Software Repositories (MSR). 131–134.

[12] B. Dit, E. Moritz, M. Linares-Vásquez, and D. Poshyvanyk. 2013. Supporting and
Accelerating Reproducible Research in Software Maintenance Using TraceLab
Component Library. In 2013 IEEE International Conference on Software Mainte-
nance. 330–339.

[13] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. Journal of Software:
Evolution and Process 25, 1 (Jan. 2013), 53–95.

[14] Bogdan Dit, Meghan Revelle, and Denys Poshyvanyk. 2013. Integrating informa-
tion retrieval, execution and link analysis algorithms to improve feature location
in software. Empirical Software Engineering 18, 2 (April 2013), 277–309.

[15] William B. Frakes and Ricardo Baeza-Yates. 1992. Information Retrieval: Data
Structures and Algorithms (1 ed.). Prentice Hall.

[16] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. 2009. On the use of relevance
feedback in IR-based concept location. In 2009 IEEE International Conference on
Software Maintenance. 351–360.

[17] N. Jalbert and W. Weimer. 2008. Automated duplicate detection for bug tracking
systems. In IEEE International Conference on Dependable Systems and Networks
With FTCS and DCC, DSN 2008. IEEE, 52–61.

[18] Dongsun Kim, Yida Tao, Sunghun Kim, and A. Zeller. 2013. Where Should We Fix
This Bug? A Two-Phase Recommendation Model. IEEE Transactions on Software
Engineering 39, 11 (Nov. 2013), 1597–1610.

[19] Anil Koyuncu, Tegawendé F. Bissyandé, , Kui Liu, Dongsun Kim, Jacques Klein,
Yves Le Traon, and Martin Monperrus. 2018. D&C: A Divide-and-Conquer, IR-
based, Multi-Classifier Approach to Bug Localization. Technical Report TR-2018-
SerVAL-01. University of Luxembourg.

[20] Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein, Martin
Monperrus, and Yves Le Traon. 2017. Impact of Tool Support in Patch Con-
struction. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2017). ACM, 237–248.

[21] T. D. B. Le, M. Linares-Vásquez, D. Lo, and D. Poshyvanyk. 2015. RCLinker:
Automated Linking of Issue Reports and Commits Leveraging Rich Contextual In-
formation. In 2015 IEEE 23rd International Conference on Program Comprehension.
36–47.

[22] Tien-Duy B. Le, Ferdian Thung, and David Lo. 2014. Predicting effectiveness of
ir-based bug localization techniques. In Software Reliability Engineering (ISSRE),
2014 IEEE 25th International Symposium on. IEEE, 335–345.

[23] Tien-Duy B. Le, Ferdian Thung, and David Lo. 2016. Will this localization tool
be effective for this bug? Mitigating the impact of unreliability of information
retrieval based bug localization tools. Empirical Software Engineering (2016),
1–43.

[24] Xiaoyong Liu and W. Bruce Croft. 2004. Cluster-based Retrieval Using Language
Models. In Proceedings of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’04). ACM, New York,
NY, USA, 186–193.

[25] Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. 2010. Bug localization
using latent Dirichlet allocation. Information and Software Technology 52, 9 (Sept.
2010), 972–990.

[26] H. B. Mann. 1947. On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other. The Annals of Mathematical Statistics 18, 1
(March 1947), 50–60.

[27] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to Information Retrieval (1 edition ed.). Cambridge University Press, New
York.

[28] Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical
Natural Language Processing (1 edition ed.). The MIT Press, Cambridge, Mass.

[29] L. Moreno, J. J. Treadway, A. Marcus, and Wuwei Shen. 2014. On the Use of
Stack Traces to Improve Text Retrieval-Based Bug Localization. In 2014 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 151–
160.

[30] Anh Tuan Nguyen, Tung Thanh Nguyen, J. Al-Kofahi, Hung Viet Nguyen, and
T. N. Nguyen. 2011. A topic-based approach for narrowing the search space of
buggy files from a bug report. In 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 263–272.

[31] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen.
2012. Multi-layered approach for recovering links between bug reports and
fixes. In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. ACM, New York, NY, USA, 63:1–63:11.

[32] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D. Lucia. 2016.
Parameterizing and Assembling IR-Based Solutions for SE Tasks Using Genetic
Algorithms. In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Vol. 1. 314–325.

[33] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the International Symposium on
Software Testing and Analysis. 199–209.

[34] D. Poshyvanyk, Y. G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich. 2007.
Feature Location Using Probabilistic Ranking of Methods Based on Execution
Scenarios and Information Retrieval. IEEE Transactions on Software Engineering
33, 6 (June 2007), 420–432.

[35] Shivani Rao and Avinash Kak. 2011. Retrieval from Software Libraries for Bug
Localization: A Comparative Study of Generic and Composite Text Models. In
Proceedings of the 8th Working Conference on Mining Software Repositories. ACM,
New York, NY, USA, 43–52.

[36] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. 2007. Detection of
Duplicate Defect Reports Using Natural Language Processing. In Proceedings of
the 29th International Conference on Software Engineering, ICSE 2007 (ICSE ’07).
IEEE Computer Society, Washington, DC, USA, 499–510.

[37] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. 2013. Improving bug localization
using structured information retrieval. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 345–355.

[38] Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA.

[39] T Strohman, D Metzler, H Turtle, and WB Croft. 2004. Indri: A language model-
based search engine for complex queries. In Proceedings of the International
Conference on Intelligence Analysis. 2–6.

[40] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. 2010.
A discriminative model approach for accurate duplicate bug report retrieval. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1, ICSE 2010. ACM, Cape Town, South Africa, 45–54. ACM ID:
1806811.

[41] A. Sureka and P. Jalote. 2010. Detecting Duplicate Bug Report Using Character
N-Gram-Based Features. In 17th Asia Pacific Software Engineering Conference,
APSEC 2010. IEEE, 366–374.

[42] G. Tassey. 2002. The Economic Impacts of Inadequate Infrastructure for Software
Testing: Final Report. Diane Publishing Company. https://books.google.lu/books?
id=juSgPAAACAAJ

[43] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the useful-
ness of IR-based fault localization techniques. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis. ACM, 1–11.

[44] ShaoweiWang and David Lo. 2014. Version History, Similar Report, and Structure:
Putting Them Together for Improved Bug Localization. In Proceedings of the 22Nd
International Conference on Program Comprehension. ACM, New York, NY, USA,
53–63.

[45] Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2016. Locus: locating bugs from
software changes. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. ACM, Singapore, Singapore, 262–273.

[46] C. P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei. 2014. Boosting Bug-
Report-Oriented Fault Localization with Segmentation and Stack-Trace Analysis.
In 2014 IEEE International Conference on Software Maintenance and Evolution.

71

https://books.google.lu/books?id=juSgPAAACAAJ
https://books.google.lu/books?id=juSgPAAACAAJ

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon

181–190.
[47] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. 2016. A Survey on Software

Fault Localization. IEEE Transactions on Software Engineering 42, 8 (Aug. 2016),
707–740.

[48] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. 2014.
CrashLocator: Locating Crashing Faults Based on Crash Stacks. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis. ACM, New
York, NY, USA, 204–214.

[49] RongxinWu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. 2011. ReLink:
recovering links between bugs and changes. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of software
engineering. ACM, New York, NY, USA, 15–25.

[50] Min Xie and Bo Yang. 2003. A study of the effect of imperfect debugging on
software development cost. IEEE Transactions on Software Engineering 29, 5
(2003), 471–473.

[51] X. Ye, R. Bunescu, and C. Liu. 2016. Mapping Bug Reports to Relevant Files:
A Ranking Model, a Fine-Grained Benchmark, and Feature Evaluation. IEEE
Transactions on Software Engineering 42, 4 (April 2016), 379–402.

[52] K. C. Youm, J. Ahn, J. Kim, and E. Lee. 2015. Bug Localization Based on Code
Change Histories and Bug Reports. In 2015 Asia-Pacific Software Engineering
Conference (APSEC). 190–197.

[53] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed? -
more accurate information retrieval-based bug localization based on bug reports.
In Proceedings of the 2012 International Conference on Software Engineering. IEEE
Press, Piscataway, NJ, USA, 14–24.

72

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Performance Metrics
	2.2 Motivation

	3 Study Design
	3.1 IRBL Techniques
	3.2 Subjects and Data Extraction
	3.3 Bug Linking
	3.4 Version Matching
	3.5 Test File Inclusion

	4 Analysis results
	4.1 Baseline Performance
	4.2 RQ1: Subject Groups
	4.3 RQ2: Impact of Matching Bug Report with Code Version
	4.4 RQ3: Test File Inclusion
	4.5 RQ4: Potential Contribution of Duplicate Bug Reports

	5 Discussion
	5.1 Execution Time
	5.2 Threats to Validity

	6 Related Work
	7 Conclusion
	References

